Search Results

Now showing 1 - 10 of 27
  • Item
    Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition
    (Washington, DC [u.a.] : Assoc., 2018) Keidel, Rico; Ghavami, Ali; Lugo, Dersy M.; Lotze, Gudrun; Virtanen, Otto; Beumers, Peter; Pedersen, Jan Skov; Bardow, Andre; Winkler, Roland G.; Richtering, Walter
    Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.
  • Item
    Reply to Ruhl and Craig: Assessing and governing extreme climate risks needs to be legitimate and democratic
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [No abstract available]
  • Item
    Competition between proton transfer and intermolecular Coulombic decay in water
    ([London] : Nature Publishing Group UK, 2018) Richter, Clemens; Hollas, Daniel; Saak, Clara-Magdalena; Förstel, Marko; Miteva, Tsveta; Mucke, Melanie; Björneholm, Olle; Sisourat, Nicolas; Slavíček, Petr; Hergenhahn, Uwe
    Intermolecular Coulombic decay (ICD) is a ubiquitous relaxation channel of electronically excited states in weakly bound systems, ranging from dimers to liquids. As it is driven by electron correlation, it was assumed that it will dominate over more established energy loss mechanisms, for example fluorescence. Here, we use electron–electron coincidence spectroscopy to determine the efficiency of the ICD process after 2a1 ionization in water clusters. We show that this efficiency is surprisingly low for small water clusters and that it gradually increases to 40–50% for clusters with hundreds of water units. Ab initio molecular dynamics simulations reveal that proton transfer between neighboring water molecules proceeds on the same timescale as ICD and leads to a configuration in which the ICD channel is closed. This conclusion is further supported by experimental results from deuterated water. Combining experiment and theory, we infer an intrinsic ICD lifetime of 12–52 fs for small water clusters.
  • Item
    Topological protection versus degree of entanglement of two-photon light in photonic topological insulators
    ([London] : Nature Publishing Group UK, 2021) Tschernig, Konrad; Jimenez-Galán, Álvaro; Christodoulides, Demetrios N.; Ivanov, Misha; Busch, Kurt; Bandres, Miguel A.; Perez-Leija, Armando
    Topological insulators combine insulating properties in the bulk with scattering-free transport along edges, supporting dissipationless unidirectional energy and information flow even in the presence of defects and disorder. The feasibility of engineering quantum Hamiltonians with photonic tools, combined with the availability of entangled photons, raises the intriguing possibility of employing topologically protected entangled states in optical quantum computing and information processing. However, while two-photon states built as a product of two topologically protected single-photon states inherit full protection from their single-photon “parents”, a high degree of non-separability may lead to rapid deterioration of the two-photon states after propagation through disorder. In this work, we identify physical mechanisms which contribute to the vulnerability of entangled states in topological photonic lattices. Further, we show that in order to maximize entanglement without sacrificing topological protection, the joint spectral correlation map of two-photon states must fit inside a well-defined topological window of protection.
  • Item
    Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
    (London : Nature Publishing Group, 2017) Riedel, Stefanie; Heyart, Benedikt; Apel, Katharina S.; Mayr, Stefan G.
    Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales.
  • Item
    Antioxidant and hydrophilic poly(lactic acid) fibers obtained through their modification with amines and ferulic acid
    (New York, NY [u.a.] : Wiley, 2017) Wojciechowska, Dorota; Herczyńska, Lucyna; Simon, Frank; Puchalski, Michał; Stawski, Dawid
    The ferulic acid (FA) is a natural antioxidant, abundantly present in plants, which acts as the plant's immune system. In order to take advantage of its properties, a method has been developed, which combines antioxidant FA with bio-based biodegradable poly(lactic acid) fibers and biocompatible hydrophilic polyallylamine, enabling the production of versatile base material that could be used for active anti-inflammatory wound dressings. The fibers are first subjected to aminolysis in order to obtain amino moieties on the surface, able to react with the molecules of FA. Next, the FA was attached to the aminolyzed fibers surface with use of 1-ethyl-3–(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The anti-inflammatory properties of the modified fibers were assessed using 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Presence of FA on the fibers’ surface was investigated through X-ray photoelectron spectroscopy analysis and Folin–Ciocalteu (total phenolic content) test.
  • Item
    Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films
    ([London] : Nature Publishing Group UK, 2022) Li, Zhan Hua; He, Jia Xing; Lv, Xiao Hu; Chi, Ling Fei; Egbo, Kingsley O.; Li, Ming-De; Tanaka, Tooru; Guo, Qi Xin; Yu, Kin Man; Liu, Chao Ping
    As a promising high mobility p-type wide bandgap semiconductor, copper iodide has received increasing attention in recent years. However, the defect physics/evolution are still controversial, and particularly the ultrafast carrier and exciton dynamics in copper iodide has rarely been investigated. Here, we study these fundamental properties for copper iodide thin films by a synergistic approach employing a combination of analytical techniques. Steady-state photoluminescence spectra reveal that the emission at ~420 nm arises from the recombination of electrons with neutral copper vacancies. The photogenerated carrier density dependent ultrafast physical processes are elucidated with using the femtosecond transient absorption spectroscopy. Both the effects of hot-phonon bottleneck and the Auger heating significantly slow down the cooling rate of hot-carriers in the case of high excitation density. The effect of defects on the carrier recombination and the two-photon induced ultrafast carrier dynamics are also investigated. These findings are crucial to the optoelectronic applications of copper iodide.
  • Item
    The multi-photon induced Fano effect
    ([London] : Nature Publishing Group UK, 2021) Litvinenko, K.L.; Le, Nguyen H.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Zhiming; Murdin, B.N.
    The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.
  • Item
    On-chip generation and dynamic piezo-optomechanical rotation of single photons
    ([London] : Nature Publishing Group UK, 2022) Bühler, Dominik D.; Weiß, Matthias; Crespo-Poveda, Antonio; Nysten, Emeline D. S.; Finley, Jonathan J.; Müller, Kai; Santos, Paulo V.; de Lima Jr., Mauricio M.; Krenner, Hubert J.
    Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.
  • Item
    Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2014) Wessling, M.; Morcillo, L. Garrigós; Abdu, S.
    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research.