Search Results

Now showing 1 - 9 of 9
  • Item
    Assessing the organic fraction of municipal solid wastes for the production of lactic acid
    (Amsterdam [u.a.] : Elsevier, 2019) López-Gómez, J. Pablo; Latorre-Sánchez, Marcos; Unger, Peter; Schneider, Roland; Coll Lozano, Caterina; Venus, Joachim
    With an estimated yearly production of about 140 Mt in the EU, conventionally, the organic fraction of municipal solid wastes (OFMSW) has been disposed in landfills with negative environmental effects. Nonetheless, the chemical composition of this residue make it a substrate with great bioconversion potential. In this study, OFMSW from Spanish municipal treatment plants, were evaluated for the production of LA. Samples were identified according to the sorting mechanisms employed for their collection in: (A) separately collected, (B) non-separately collected and (C) separately collected+paper/cardboard. Enzymatic hydrolysis was used to produce hydrolysates A, B and C accordingly. Hydrolysate A showed the highest total sugars and glucose content with values of 70 and 55 g·L−1, respectively. Following the characterisation, a screening showed that growth of B. coagulans was possible in all three hydrolysates. Furthermore, lab scale fermentations showed that LA final concentrations could reach around 60 g·L−1, with yields from total sugars of above 0.60 g·g−1. A technical scale fermentation of the hydrolysate A resulted in a final LA concentration of 60.7 g·L−1, a yield of 0.71 g·g−1 with a productivity of 2.68 g·L−1·h−1. Overall, it was estimated that 0.23 g of LA could be produced from one g of dry OFMSW.
  • Item
    From Upstream to Purification : Production of Lactic Acid from the Organic Fraction of Municipal Solid Waste
    ([Dordrecht] : Springer Netherlands, 2020) López‑Gómez, José Pablo; Unger, Peter; Schneider, Roland; Venus, Joachim
    The implementation of an efficient and sustainable management of the organic fraction of municipal solid wastes (OFMSW) is a topic of intensive discussion in EU countries. Recently, the OFMSW has been investigated as a potential substrate for the production of lactic acid (LA) through fermentation. Nevertheless, none of the reports available in the literature covers all the stages of the conversion process. The present research article is a comprehensive study which includes the upstream, fermentation and downstream for the conversion of OFMSW into LA. Several batches of OFMSW were analysed for the evaluation of sugars released and LA content before the fermentation. Fermentations were performed to study the effect of hydrolysate quality on the LA production using Bacillus coagulans A166. Purification of LA, based on electrodialysis, was carried out after pilot scale fermentation of OFMSW hydrolysates. Results showed that variations in the concentrations of sugars and LA are observed from batch to batch of OFMSW. More specifically, LA can reach high concentrations even before the substrates are hydrolysed, limiting the potential applications of the final product due to low enantiomeric purities. In general, fermentations of the hydrolysate were efficient, with conversion yields of 0.65 g g−1 without the addition of extra nutrients. Downstream is still a challenging stage of the process. A LA recovery of 55% was obtained, with the most significant losses observed during the micro- and nanofiltrations. Overall, a conversion of 10% from OFMSW substrate (dry basis) to LA was achieved.
  • Item
    L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans
    (Basel : MDPI, 2020) Schroedter, Linda; Schneider, Roland; Remus, Lisa; Venus, Joachim
    Biotechnological production of lactic acid (LA) is based on the so-called first generation feedstocks, meaning sugars derived from food and feed crops such as corn, sugarcane and cassava. The aim of this study was to exploit the potential of a second generation resource: Common reed (Phragmites australis) is a powerfully reproducing sweet grass which grows in wetlands and creates vast monocultural populations. This lignocellulose biomass bears the possibility to be refined to value-added products, without competing with agro industrial land. Besides utilizing reed as a renewable and inexpensive substrate, low-cost nutritional supplementation was analyzed for the fermentation of thermophilic Bacillus coagulans. Various nutritional sources such as baker’s and brewer’s yeast, lucerne green juice and tryptone were investigated for the replacement of yeast extract. The structure of the lignocellulosic material was tackled by chemical treatment (1% NaOH) and enzymatic hydrolysis (Cellic® CTec2). B. coagulans DSM ID 14-300 was employed for the homofermentative conversion of the released hexose and pentose sugars to polymerizable L-(+)-LA of over 99.5% optical purity. The addition of autolyzed baker’s yeast led to the best results of fermentation, enabling an LA titer of 28.3 g L−1 and a yield of 91.6%.
  • Item
    Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste
    (Basel : MDPI, 2021) Martău, Gheorghe-Adrian; Unger, Peter; Schneider, Roland; Venus, Joachim; Vodnar, Dan Cristian; López-Gómez, José Pablo
    Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.
  • Item
    Production and purification of L-lactic acid in lab and pilot scales using sweet sorghum juice
    (Basel : MDPI AG, 2019) Olszewska-Widdrat, A.; Alexandri, M.; López-Gómez, J.P.; Schneider, R.; Mandl, M.; Venus, J.
    Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g·L−1, 0.78 g·g−1 and 1.77 g·L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g·L−1, 0.70 g·g−1 and 1.47 g·L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g·L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.
  • Item
    Pilot Scale for Production and Purification of Lactic Acid from Ceratonia siliqua L. (Carob) Bagasse
    (Basel : MDPI, 2022) Azaizeh, Hassan; Abu Tayeh, Hiba Nazmi; Schneider, Roland; Venus, Joachim
    The bioconversion of lignocellulose and organic waste bagasse to lactic acid (LA) is an important alternative process requiring valorization as a potentially viable method in the production of pure LA, to be utilized for various purposes. Carob (Ceratonia siliqua L.) biomass was used for the production of LA, using a thermophilic Bacillus coagulans isolate, cultivated in a batch pilot scale of 35 L fermenters without yeast extract supplementation, and operated for 50 h. During the fermentation process, most of the degradable sugar was consumed within 35 h and resulted in the production of 46.9 g/L LA, with a calculated LA yield of 0.72 g/g sugars and productivity at the log phase of 1.69 g/L/h. The use of LA for different industrial applications requires high purity; therefore, a downstream process (DSP) consisting of different purification stages was used, enabling us to reach up to 99.9% (w/w) product purity, which indicates that the process was very effective. The overall almost pure L-LA yield of the DSP was 56%, which indicates that a considerable amount of LA (46%) was lost during the different DSP stages. This is the first study in which carob biomass bagasse has been tested on a pilot scale for LA production, showing the industrial feasibility of the fermentation process.
  • Item
    Production of lactic acid from pasta wastes using a biorefinery approach
    (London : BioMed Central, 2022) Marzo-Gago, Cristina; Venus, Joachim; López-Gómez, José Pablo
    A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.
  • Item
    Upgrading pasta wastes through lactic acid fermentations
    (Amsterdam : Elsevier, 2022) López-Gómez, José Pablo; Unger, Peter; Schneider, Roland; Pierrard, Marie-Aline; Venus, Joachim
    During its production process, every kilogram of pasta manufactured generates about 23 g of pasta wastes (PW). Considering the global pasta production, there are about 376 kilotonnes of PW produced every year. In this work, PW were characterised and used as the substrate in lactic acid (LA) fermentations. Enzymatic hydrolysis of 200 g/L of PW allowed for the liberation of sugars with a yield 0.81 gs/gdryPW. After the screening of several B. coagulans, the strain A559 was selected for experiments at the lab and pilot scales. Two fermentation modes were tested during lab scale experiments namely, simultaneous saccharification and fermentation and sequential hydrolysis and fermentation with the latter showing higher yields. The process was scaled up to 50 L where a LA concentration of 47.67 g/L and yield of 0.67 gLA/gdrydPW were achieved.
  • Item
    Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose
    (Basel : MDPI, 2021) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    A new biorefinery concept is proposed that integrates the novel LX-Pretreatment with the fermentative production of L-(+)-lactic acid. Lignocellulose was chosen as a substrate that does not compete with the provision of food or feed. Furthermore, it contains lignin, a promising new chemical building material which is the largest renewable source for aromatic compounds. Two substrates were investigated: rye straw (RS) as a residue from agriculture, as well as the fibrous digestate of an anaerobic biogas plant operated with energy corn (DCS). Besides the prior production of biogas from energy corn, chemically exploitable LX-Lignin was produced from both sources, creating a product with a low carbohydrate and ash content (90.3% and 88.2% of acid insoluble lignin). Regarding the cellulose fraction of the biomass, enzymatic hydrolysis and fermentation experiments were conducted, comparing a separate (SHF), simultaneous (SSF) and prehydrolyzed simultaneous saccharification and fermentation (PSSF) approach. For this purpose, thermophilic B. coagulans 14-300 was utilized, reaching 38.0 g L−1 LA in 32 h SSF from pretreated RS and 18.3 g L−1 LA in 30 h PSSF from pretreated DCS with optical purities of 99%.