Search Results

Now showing 1 - 4 of 4
  • Item
    Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo
    (Weinheim : Wiley-VCH, 2021) Aziz, Azaam; Holthof, Joost; Meyer, Sandra; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
    (Basingstoke : Nature Publishing Group, 2023) Gallop, Nathaniel. P.; Maslennikov, Dmitry R.; Mondal, Navendu; Goetz, Katelyn P.; Dai, Zhenbang; Schankler, Aaron M.; Sung, Woongmo; Nihonyanagi, Satoshi; Tahara, Tahei; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Vaynzof, Yana; Rappe, Andrew M.; Bakulin, Artem A.
    Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.
  • Item
    Release of Bioactive Molecules from Graphene Oxide-Alginate Hybrid Hydrogels: Effect of Crosslinking Method
    (Basel : MDPI, 2023) Madeo, Lorenzo Francesco; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; Hampel, Silke; Cirillo, Giuseppe
    To investigate the influence of crosslinking methods on the releasing performance of hybrid hydrogels, we synthesized two systems consisting of Graphene oxide (GO) as a functional element and alginate as polymer counterpart by means of ionic gelation (physical method, 𝐻𝑃𝐴−𝐺𝑂) and radical polymerization (chemical method, 𝐻𝐶𝐴−𝐺𝑂). Formulations were optimized to maximize the GO content (2.0 and 1.15% for 𝐻𝑃𝐴−𝐺𝑂 and 𝐻𝐶𝐴−𝐺𝑂, respectively) and Curcumin (CUR) was loaded as a model drug at 2.5, 5.0, and 7.5% (by weight). The physico-chemical characterization confirmed the homogeneous incorporation of GO within the polymer network and the enhanced thermal stability of hybrid vs. blank hydrogels. The determination of swelling profiles showed a higher swelling degree for 𝐻𝐶𝐴−𝐺𝑂 and a marked pH responsivity due to the COOH functionalities. Moreover, the application of external voltages modified the water affinity of 𝐻𝐶𝐴−𝐺𝑂, while they accelerated the degradation of 𝐻𝑃𝐴−𝐺𝑂 due to the disruption of the crosslinking points and the partial dissolution of alginate. The evaluation of release profiles, extensively analysed by the application of semi-empirical mathematical models, showed a sustained release from hybrid hydrogels, and the possibility to modulate the releasing amount and rate by electro-stimulation of 𝐻𝐶𝐴−𝐺𝑂.
  • Item
    Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy
    (Basel : MDPI, 2021) Curcio, M.; Cirillo, G.; Saletta, F.; Michniewicz, F.; Nicoletta, F.; Vittorio, O.; Hampel, S.; Iemma, F.
    Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices.