Search Results

Now showing 1 - 6 of 6
  • Item
    Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms
    (Amsterdam : Elsevier, 2020) Bakalis, Serafim; Valdramidis, Vasilis P.; Argyropoulos, Dimitrios; Ahrne, Lilia; Chen, Jianshe; Cullen, P.J.; Cummins, Enda; Datta, Ashim K.; Emmanouilidis, Christos; Foster, Tim; Fryer, Peter J.; Gouseti, Ourania; Hospido, Almudena; Knoerzer, Kai; LeBail, Alain; Marangoni, Alejandro G.; Rao, Pingfan; Schlüter, Oliver K.; Taoukis, Petros; Xanthakis, Epameinondas; Van Impe, Jan F.M.
    [no abstract available]
  • Item
    Tailoring biocompatible Ti-Zr-Nb-Hf-Si metallic glasses based on high-entropy alloys design approach
    (Amsterdam : Elsevier, 2020) Calin, Mariana; Vishnu, Jithin; Thirathipviwat, Pramote; Popa, Monica-Mihaela; Krautz, Maria; Manivasagam, Geetha; Gebert, Annett
    Present work unveils novel magnetic resonance imaging (MRI) compatible glassy Ti-Zr-Nb-Hf-Si alloys designed based on a high entropy alloys approach, by exploring the central region of multi-component alloy phase space. Phase analysis has revealed the amorphous structure of developed alloys, with a higher thermal stability than the conventional metallic glasses. The alloys exhibit excellent corrosion properties in simulated body fluid. Most importantly, the weak paramagnetic nature (ultralow magnetic susceptibility) and superior radiopacity (high X-ray attenuation coefficients) offer compatibility with medical diagnostic imaging systems thereby opening unexplored realms for biomedical applications.
  • Item
    Dynamic cooling strategy based on individual animal response mitigated heat stress in dairy cows
    (Amsterdam : Elsevier, 2020) Levit, H.; Pinto, S.; Amon, T.; Gershon, E.; Kleinjan-Elazary, A.; Bloch, V.; Ben Meir, Y.A.; Portnik, Y.; Jacoby, S.; Arnin, A.; Miron, J.; Halachmi, I.
    Technological progress enables individual cow's temperatures to be measured in real time, using a bolus sensor inserted into the rumen (reticulorumen). However, current cooling systems often work at a constant schedule based on the ambient temperature and not on monitoring the animal itself. This study hypothesized that tailoring the cooling management to the cow's thermal reaction can mitigate heat stress. We propose a dynamic cooling system based on in vivo temperature sensors (boluses). Thus, cooling can be activated as needed and is thus most efficacious. A total of 30 lactating cows were randomly assigned to one of two groups; the groups received two different evaporative cooling regimes. A control group received cooling sessions on a preset time-based schedule, the method commonly used in farms; and an experimental group, which received the sensor-based (SB) cooling regime. Sensor-based was changed weekly according to the cow's reaction, as reflected in the changes in body temperatures from the previous week, as measured by reticulorumen boluses. The two treatment groups of cows had similar milk yields (44.7 kg/d), but those in the experimental group had higher milk fat (3.65 vs 3.43%), higher milk protein (3.23 vs 3.13%), higher energy corrected milk (ECM, 42.84 vs 41.48 kg/d), higher fat corrected milk 4%; (42.76 vs 41.34 kg/d), and shorter heat stress duration (5.03 vs 9.46 h/day) comparing to the control. Dry matter intake was higher in the experimental group. Daily visits to the feed trough were less frequent, with each visit lasting longer. The sensor-based cooling regime may be an effective tool to detect and ease heat stress in high-producing dairy cows during transitional seasons when heat load can become severe in arid and semi-arid zones.
  • Item
    The strategic dimension of financing global public goods
    (Amsterdam : Elsevier, 2020) Kornek, Ulrike; Edenhofer, Ottmar
    One challenge in addressing transboundary problems such as climate change is the incentive to free-ride. Transfers from multilateral compensation funds are often used to counteract such incentives, albeit with varying success. We examine how such funds can change the incentive to free-ride in a global public-goods game. In our game, self-interested countries choose their own preferred course, deciding their voluntary public good provision, whether to join a fund that offers compensation for providing the public good and the volume of compensatory payments. We show that (i) total public-good provision is higher when those contributing are given more compensation; and (ii) non-participation in the fund can be punished if the remaining members decrease their public-good provision sufficiently. We then examine three specific fund designs. In the first, the compensation paid to each country is equal to the percentage of above-average total costs for public-goods provision. This design is best able to deter free-riding and can establish the social optimum as the equilibrium. In the second, the compensation paid to each country is a function of the marginal cost of their public-good provision. Here there are significant incentives to free-ride. In the third case, the monetary resources provided by the fund are fixed, a design frequently encountered in international funds. This design is the one least able to deter free-riding. © 2020 The Author(s)
  • Item
    3D Quantification of Vascular-Like Structures in z Stack Confocal Images
    (Amsterdam : Elsevier, 2020) Bonda, Ulrich; Jaeschke, Anna; Lighterness, Anthony; Baldwin, Jeremy; Werner, Carsten; De-Juan-Pardo, Elena M.; Bray, Laura J.
    Optical slice microscopy is commonly used to characterize the morphometric features of 3D cellular cultures, such as in vitro vascularization. However, the quantitative analysis of those structures is often performed on a single 2D maximum intensity projection image, limiting the accuracy of data obtained from 3D cultures. Here, we present a protocol for the quantitative analysis of z stack images, utilizing Fiji, Amira, and WinFiber3D. This protocol facilitates the in-depth examination of vascular-like structures within 3D cell culture models.
  • Item
    The environmental footprint of health care: a global assessment
    (Amsterdam : Elsevier, 2020) Lenzen, Manfred; Malik, Arunima; Li, Mengyu; Fry, Jacob; Weisz, Helga; Pichler, Peter-Paul; Chaves, Leonardo Suveges Moreira; Capon, Anthony; Pencheon, David
    Background: Health-care services are necessary for sustaining and improving human wellbeing, yet they have an environmental footprint that contributes to environment-related threats to human health. Previous studies have quantified the carbon emissions resulting from health care at a global level. We aimed to provide a global assessment of the wide-ranging environmental impacts of this sector. Methods: In this multiregional input-output analysis, we evaluated the contribution of health-care sectors in driving environmental damage that in turn puts human health at risk. Using a global supply-chain database containing detailed information on health-care sectors, we quantified the direct and indirect supply-chain environmental damage driven by the demand for health care. We focused on seven environmental stressors with known adverse feedback cycles: greenhouse gas emissions, particulate matter, air pollutants (nitrogen oxides and sulphur dioxide), malaria risk, reactive nitrogen in water, and scarce water use. Findings: Health care causes global environmental impacts that, depending on which indicator is considered, range between 1% and 5% of total global impacts, and are more than 5% for some national impacts. Interpretation: Enhancing health-care expenditure to mitigate negative health effects of environmental damage is often promoted by health-care practitioners. However, global supply chains that feed into the enhanced activity of health-care sectors in turn initiate adverse feedback cycles by increasing the environmental impact of health care, thus counteracting the mission of health care. Funding: Australian Research Council, National eResearch Collaboration Tools and Resources project. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license