Search Results

Now showing 1 - 10 of 23
  • Item
    Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties
    (Hindawi Publishing Corporation, 2014) Schnabelrauch, M.; Wyrwa, R.; Rebl, H.; Bergemann, C.; Finke, B.; Schlosser, M.; Walschus, U.; Lucke, S.; Weltmann, K.-D.; Nebe, J.B.
    Poly(L-lactide-co-D/L-lactide)-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm) layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts) revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes.
  • Item
    Interaction of a free burning arc with regenerative protective layers
    (Bristol : Institute of Physics Publishing, 2014) Uhrlandt, D.; Gorchakov, S.; Brueser, V.; Franke, S.; Khakpour, A.; Lisnyak, M.; Methling, R.; Schoenemann, T.
    The possible use of protective layers made of ceramic powders for walls in thermal plasma applications is studied. A stable free burning arc of currents up to 5 kA between copper- tungsten electrodes is used to analyse the arc interaction with samples coated by mixtures of CaCO3, MgCO3, and Mg(OH)2 with plaster. By means of optical emission spectroscopy the maximum arc temperature and the radiation impact on the surfaces are estimated to be around 15000 K and 20 MWm-2, respectively. Thermographic measurements confirm the efficient protection of substrates by all layer materials. Layers containing CaCO3 lead to the lowest heating of ceramic samples which may be caused by a strong evaporation of the layer material.
  • Item
    Influence of the arc plasma parameters on the weld pool profile in TIG welding
    (Bristol : Institute of Physics Publishing, 2014) Toropchin, A.; Frolov, V.; Pipa, A.V.; Kozakov, R.; Uhrlandt, D.
    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
  • Item
    Searching for order in atmospheric pressure plasma jets
    (Bristol : IOP Publ., 2017-11-10) Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger
    The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity uz are forced to a transversal movement with the velocity uφ=tan(α)*uz, which is oriented in the inclination direction. Variations of ${u}_{\phi }$ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.
  • Item
    Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms
    (San Francisco, CA : Public Library of Science, 2012) Fricke, K.; Koban, I.; Tresp, H.; Jablonowski, L.; Schröder, K.; Kramer, A.; Weltmann, K.-D.; von Woedtke, T.; Kocher, T.
    Introduction: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. Method: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. Results: The Candida albicans biofilm, with a thickness of 10 to 20 μm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.
  • Item
    VEM Verbundprojekt "Effizienzsteigerung der Meeresforschungstechnik", Teilprojekt 5: Plasmabehandlung von Stackkomponenten für die Unterwasseranwendungen : Abschlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Brüser, Volker; Savastenko, Natalie; Anklam, Kirsten; Müller, Steffen
    [no abstract available]
  • Item
    Strategieförderung: Strategische Kooperation zur gemeinsamen Verwertung in Mikrowellentechnik, Optoelektronik und Plasmatechnologie, Kurzbezeichnung: VALORES: Valorisation of Research - Strategic Cooperation of Institutes
    (Hannover : Technische Informationsbibliothek (TIB), 2010) Niehardt, Frank; Grzeganek, Merit; Häckel, Marko; Haselton, Kirk; Kerl, Ralf; Sauer, Franziska
    [no abstract available]
  • Item
    Entwicklung eines Plasma-Emissionsdetektors für die Bestimmung von Schwermetall-Spezies für Anwendungen in der Umweltanalytik, Lebensmittel-Qualitätssicherung und Umweltmedizin : Schlussbericht ; (Bewilligungszeitraum: 01.02.2009 - 31.07.2012)
    (Greifswald : Leibniz-Institut für Plasmaforschung und Technologie, 2012) Wolfgang Buscher, Wolfgang Buscher; Ehlbeck, Jörg; Piechotta, Christian
    [no abstract available]