Search Results

Now showing 1 - 9 of 9
  • Item
    CADEX and beyond: Installation of a new PollyXT site in Dushanbe
    (Les Ulis : EDP Sciences, 2019) Engelmann, Ronny; Hofer, Julian; Makhmudov, Abduvosit N.; Baars, Holger; Hanbuch, Karsten; Ansmann, Albert; Abdullaev, Sabur F.; Macke, Andreas; Althausen, Dietrich
    During the 18-month Central Asian Dust Experiment we conducted continuous lidar measurements at the Physical Technical Institute of the Academy of Sciences of Tajikistan in Dushanbe between 2015 and 2016. Mineral dust plumes from various source regions have been observed and characterized in terms of their occurrence, and their optical and microphysical properties with the Raman lidar PollyXT. Currently a new container-based lidar system is constructed which will be installed for continuous long-term measurements in Dushanbe. © 2019 The Authors, published by EDP Sciences.
  • Item
    The regime of Aerosol Optical Depth and Ångström exponent over Central and South Asia
    (Les Ulis : EDP Sciences, 2019) Floutsi, Athina Avgousta; Korras Carraca, Marios Bruno; Matsoukas, Christos; Hatzianastassiou, Nikos; Biskos, George
    Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS-Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to-0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to-0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835. © 2019 The Authors, published by EDP Sciences.
  • Item
    Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds
    (Les Ulis : EDP Sciences, 2019) Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Nisantzi, Agyro; Hofer, Julian; Baars, Holger
    We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution. © 2019 The Authors, published by EDP Sciences.
  • Item
    Vertical profiles of dust and other aerosol types above a coastal site
    (Les Ulis : EDP Sciences, 2019) Althausen, Dietrich; Mewes, Silke; Heese, Birgit; Hofer, Julian; Schechner, Yoav; Aides, Amit; Holodovsky, Vadim
    Monthly mean vertical profiles of aerosol type occurrences are determined from multiwavelength Raman and polarization lidar measurements above Haifa, Israel, in 2017. This contribution presents the applied methods and threshold values. The results are discussed for one example, May 2017. This month shows more often large, non-spherical particles in lofted layers than within the planetary boundary layer. Small particles are observed at higher altitudes only when they are observed in lower altitudes, too. © 2019 The Authors, published by EDP Sciences.
  • Item
    Modelling mineral dust in the Central Asian region
    (Les Ulis : EDP Sciences, 2019) Heinold, Bernd; Tegen, Ina
    In Central Asia, climate and air quality are largely affected by local and long-travelled mineral dust. For the last century, the area has experienced severe land-use changes and water exploitation producing new dust sources. Today global warming causes rapid shrinking of mountain glaciers with yet unknow consequences for dust and its climate effects. Despite the importance for a growing population, only little is known about sources, transport pathways and properties of Central Asian dust. A transport study with a global aerosol-climate model is undertaken to investigate the life cycle of mineral dust in Central Asia for the period of a remote-sensing campaign in Tajikistan in 2015-2016. An initial evaluation with sun photometer measurements shows reasonable agreement for the average amount of dust, but a significant weakness of the model in reproducing the seasonality of local dust with maximum activity in summer. Source apportionment reveals a major contribution from Arabia throughout the year in accordance with observations. In the model, local sources mainly contribute in spring and autumn while summer-time dust production is underestimated. The results underline the importance of considering long-range transport and, locally, a detailed representation of atmospheric dynamics and surface characteristics for modelling dust in Central Asia. © 2019 The Authors, published by EDP Sciences.
  • Item
    Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond
    (Sapporo : IODP, 2020) Soreghan, Gerilyn S.; Beccaletto, Laurent; Benison, Kathleen C.; Bourquin, Sylvie; Feulner, Georg; Hamamura, Natsuko; Hamilton, Michael; Heavens, Nicholas G.; Hinnov, Linda; Huttenlocker, Adam; Looy, Cindy; Pfeifer, Lily S.; Pochat, Stephane; Sardar Abadi, Mehrdad; Zambito, James
    Chamberlin and Salisbury's assessment of the Permian a century ago captured the essence of the period: it is an interval of extremes yet one sufficiently recent to have affected a biosphere with near-modern complexity. The events of the Permian - the orogenic episodes, massive biospheric turnovers, both icehouse and greenhouse antitheses, and Mars-analog lithofacies - boggle the imagination and present us with great opportunities to explore Earth system behavior. The ICDP-funded workshops dubbed "Deep Dust," held in Oklahoma (USA) in March 2019 (67 participants from nine countries) and Paris (France) in January 2020 (33 participants from eight countries), focused on clarifying the scientific drivers and key sites for coring continuous sections of Permian continental (loess, lacustrine, and associated) strata that preserve high-resolution records. Combined, the two workshops hosted a total of 91 participants representing 14 countries, with broad expertise. Discussions at Deep Dust 1.0 (USA) focused on the primary research questions of paleoclimate, paleoenvironments, and paleoecology of icehouse collapse and the run-up to the Great Dying and both the modern and Permian deep microbial biosphere. Auxiliary science topics included tectonics, induced seismicity, geothermal energy, and planetary science. Deep Dust 1.0 also addressed site selection as well as scientific approaches, logistical challenges, and broader impacts and included a mid-workshop field trip to view the Permian of Oklahoma. Deep Dust 2.0 focused specifically on honing the European target. The Anadarko Basin (Oklahoma) and Paris Basin (France) represent the most promising initial targets to capture complete or near-complete stratigraphic coverage through continental successions that serve as reference points for western and eastern equatorial Pangaea. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust
    (Bristol : IOP Publ., 2016) Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana
    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M⊙ stars with the Z = 0.008.
  • Item
    Transport of mineral dust and its impact on climate
    (Basel : MDPI, 2018) Schepanski, Kerstin
    Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.
  • Item
    Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus
    (Basel : MDPI, 2021) Fountoulakis, Ilias; Kosmopoulos, Panagiotis; Papachristopoulou, Kyriakoula; Raptis, Ioannis-Panagiotis; Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Gkikas, Antonis; Witthuhn, Jonas; Bley, Sebastian; Moustaka, Anna; Buehl, Johannes; Seifert, Patric; Hadjimitsis, Diofantos G.; Kontoes, Charalampos; Kazadzis, Stelios
    Cyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, and information for clouds from CM SAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation for 2004–2017 and the corresponding financial loss for different types of installations for the production of solar energy. Surface solar radiation climatology has also been developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5–10% of the annual global horizontal irradiation and 15–35% of the annual direct normal irradiation, while clouds attenuate 25–30% and 35–50% respectively. Dust is responsible for 30–50% of the overall attenuation by aerosols and is the main regulator of the variability of total aerosol. All-sky annual global horizontal irradiation increased significantly in the period of study by 2%, which was mainly attributed to changes in cloudiness.