Search Results

Now showing 1 - 10 of 50
  • Item
    Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland
    (Katlenburg-Lindau : Copernicus, 2017-5-30) Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo
    The Zackenberg River delta is located in northeast Greenland (74°30′ N, 20°30′ E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.
  • Item
    X-ray computed tomography investigation of structures in Opalinus Clay fromlarge-scale to small-scale after mechanical testing
    (Göttingen : Copernicus Publ., 2016) Kaufhold, Annette; Halisch, Matthias; Zacher, Gerhard; Kaufhold, Stephan
    In the past years X-ray computed tomography (CT) has became more and more common for geoscientific applications and is used from the µm-scale (e.g. for investigations of microfossils or pore-scale structures) up to the dm-scale (full drill cores or soil columns). In this paper we present results from CT imaging and mineralogical investigations of an Opalinus Clay core on different scales and different regions of interest, emphasizing especially the 3-D evaluation and distribution of cracks and their impact on mechanical testing of such material. Enhanced knowledge of the testing behaviour of the Opalinus Clay is of great interest, especially since this material is considered for a long-term radioactive waste disposal and storage facility in Switzerland. Hence, results are compared regarding the mineral (i.e. phase) contrast resolution, the spatial resolution, and the overall scanning speed. With this extensive interdisciplinary scale-down approach it has been possible to characterize the general fracture propagation in comparison to mineralogical and textural features of the Opalinus Clay. Additionally, and as far as we know, a so-called mylonitic zone, located at an intersect of two main fractures, has been observed for the first time for an experimentally deformed Opalinus sample. The multi-scale results are in good accordance to data from naturally deformed Opalinus Clay samples, which enables us to perform systematical research under controlled laboratory conditions. Accompanying 3-D imaging greatly enhances the capability of data interpretation and assessment of such a material.
  • Item
    A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir
    (Göttingen : Copernicus Publ., 2019) Bauer, Johanna F.; Krumbholz, Michael; Luijendijk, Elco; Tanner, David C.
    Geothermal energy is an important and sustainable resource that has more potential than is currently utilized. Whether or not a deep geothermal resource can be exploited, mostly depends on, besides temperature, the utilizable reservoir volume over time, which in turn largely depends on petrophysical parameters. We show, using over 1000 (n=1027) 4-D finite-element models of a simple geothermal doublet, that the lifetime of a reservoir is a complex function of its geological parameters, their heterogeneity, and the background hydraulic gradient (BHG). In our models, we test the effects of porosity, permeability, and BHG in an isotropic medium. Furthermore, we simulate the effect of permeability contrast and anisotropy induced by layering, fractures, and a fault. We quantify the lifetime of the reservoir by measuring the time to thermal breakthrough, i.e. how many years pass before the temperature of the produced fluid falls below the 100 ∘C threshold. The results of our sensitivity study attest to the positive effect of high porosity; however, high permeability and BHG can combine to outperform the former. Particular configurations of all the parameters can cause either early thermal breakthrough or extreme longevity of the reservoir. For example, the presence of high-permeability fractures, e.g. in a fault damage zone, can provide initially high yields, but it channels fluid flow and therefore dramatically restricts the exploitable reservoir volume. We demonstrate that the magnitude and orientation of the BHG, provided permeability is sufficiently high, are the prime parameters that affect the lifetime of a reservoir. Our numerical experiments show also that BHGs (low and high) can be outperformed by comparatively small variations in permeability contrast (103) and fracture-induced permeability anisotropy (101) that thus strongly affect the performance of geothermal reservoirs.
  • Item
    Two Massive Hydraulic Tests Completed in Deep KTB Pilot Hole
    (Sapporo : IODP, 2006) Kümpel, Hans-Joachim; Erzinger, Jörg; Shapiro, A.
    [No abstract available]
  • Item
    Distinct element geomechanical modelling of the formation of sinkhole clusters within large-scale karstic depressions
    (Göttingen : Copernicus Publ., 2019) Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Watson, Robert A.; Polom, Ulrich; Schöpfer, Martin P. J.; Emam, Sacha; Dahm, Torsten
    The 2-D distinct element method (DEM) code (PFC2D_V5) is used here to simulate the evolution of subsidence-related karst landforms, such as single and clustered sinkholes, and associated larger-scale depressions. Subsurface material in the DEM model is removed progressively to produce an array of cavities; this simulates a network of subsurface groundwater conduits growing by chemical/mechanical erosion. The growth of the cavity array is coupled mechanically to the gravitationally loaded surroundings, such that cavities can grow also in part by material failure at their margins, which in the limit can produce individual collapse sinkholes. Two end-member growth scenarios of the cavity array and their impact on surface subsidence were examined in the models: (1) cavity growth at the same depth level and growth rate; (2) cavity growth at progressively deepening levels with varying growth rates. These growth scenarios are characterised by differing stress patterns across the cavity array and its overburden, which are in turn an important factor for the formation of sinkholes and uvala-like depressions. For growth scenario (1), a stable compression arch is established around the entire cavity array, hindering sinkhole collapse into individual cavities and favouring block-wise, relatively even subsidence across the whole cavity array. In contrast, for growth scenario (2), the stress system is more heterogeneous, such that local stress concentrations exist around individual cavities, leading to stress interactions and local wall/overburden fractures. Consequently, sinkhole collapses occur in individual cavities, which results in uneven, differential subsidence within a larger-scale depression. Depending on material properties of the cavity-hosting material and the overburden, the larger-scale depression forms either by sinkhole coalescence or by widespread subsidence linked geometrically to the entire cavity array. The results from models with growth scenario (2) are in close agreement with surface morphological and subsurface geophysical observations from an evaporite karst area on the eastern shore of the Dead Sea.
  • Item
    Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
    (Göttingen : Copernicus Publ., 2019) Nickschick, Tobias; Flechsig, Christina; Mrlina, Jan; Oppermann, Frank; Löbig, Felix; Günther, Thomas
    The Cheb Basin, a region of ongoing swarm earthquake activity in the western Czech Republic, is characterized by intense carbon dioxide degassing along two known fault zones – the N–S-striking Počatky–Plesná fault zone (PPZ) and the NW–SE-striking Mariánské Lázně fault zone (MLF). The fluid pathways for the ascending CO2 of mantle origin are one of the subjects of the International Continental Scientific Drilling Program (ICDP) project “Drilling the Eger Rift” in which several geophysical surveys are currently being carried out in this area to image the topmost hundreds of meters to assess the structural situation, as existing boreholes are not sufficiently deep to characterize it. As electrical resistivity is a sensitive parameter to the presence of conductive rock fractions as liquid fluids, clay minerals, and also metallic components, a large-scale dipole–dipole experiment using a special type of electric resistivity tomography (ERT) was carried out in June 2017 in order to image fluid-relevant structures. We used permanently placed data loggers for voltage measurements in conjunction with moving high-power current sources to generate sufficiently strong signals that could be detected all along the 6.5 km long profile with 100 and 150 m dipole spacings. After extensive processing of time series for voltage and current using a selective stacking approach, the pseudo-section is inverted, which results in a resistivity model that allows for reliable interpretations depths of up than 1000 m. The subsurface resistivity image reveals the deposition and transition of the overlying Neogene Vildštejn and Cypris formations, but it also shows a very conductive basement of phyllites and granites that can be attributed to high salinity or rock alteration by these fluids in the tectonically stressed basement. Distinct, narrow pathways for CO2 ascent are not observed with this kind of setup, which hints at wide degassing structures over several kilometers within the crust instead. We also observed gravity and GPS data along this profile in order to constrain ERT results. A gravity anomaly of ca. −9 mGal marks the deepest part of the Cheb Basin where the ERT profile indicates a large accumulation of conductive rocks, indicating a very deep weathering or alteration of the phyllitic basement due to the ascent of magmatic fluids such as CO2. We propose a conceptual model in which certain lithologic layers act as caps for the ascending fluids based on stratigraphic records and our results from this experiment, providing a basis for future drillings in the area aimed at studying and monitoring fluids.
  • Item
    Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten
    (Stuttgart : Schweizerbart, 2018) Mraz, Elena; Moeck, Inga; Bissmann, Silke; Hild, Stephan
    Mraz, E., Moeck, I., Bissmann, S. & Hild, S. (2018): Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. – Z. Dt. Ges. Geowiss., 169: 389–411, Stuttgart. The Bavarian Molasse Basin represents a peripheral foreland basin hosting abundant hydrothermal resources in 3–5 km deep Upper Jurassic carbonate rocks. Faults and facies play a major role in targeting production wells; however the kinematic evolution of fault zones and the classification of carbonate facies of the Upper Jurassic are still debated. At the geothermal prospect Mauerstetten in the Western Bavarian Molasse Basin, a geothermal well and a side track are drilled along and about 650 m off an ENE–WSW striking normal fault. A stratigraphy related fault throw analysis of six 2D seismic sections crossing this fault evidences multiphase normal faulting from Cretaceous to Upper Miocene with a major activity phase in the Oligocene. This fault, inactive since Upper Miocene, is presumably a fossil normal fault in the present-day stress field that has a maximum horizontal stress direction in N–S. Analysis of carbonate facies by thin section petrography of drill cuttings and geophysical borehole logs lead to two major conclusions: (i) the reservoir rock represents low permeable platform limestones, reef detritus and dolostones of the Franconian facies, and (ii) the fault consists of multiple normal faulting steps with higher permeability than in intact rock. This observation suggests a fracture controlled reservoir with permeable damage zones in a tight rock mass along reactivated normal faults.
  • Item
    Two-dimensional numerical investigations on the termination of bilinear flow in fractures
    (Göttingen : Copernicus Publ., 2013) Ortiz R., A.E.; Jung, R.; Renner, J.
    Bilinear flow occurs when fluid is drained from a permeable matrix by producing it through an enclosed fracture of finite conductivity intersecting a well along its axis. The terminology reflects the combination of two approximately linear flow regimes: one in the matrix with flow essentially perpendicular to the fracture, and one along the fracture itself associated with the non-negligible pressure drop in it. We investigated the characteristics, in particular the termination, of bilinear flow by numerical modeling allowing for an examination of the entire flow field without prescribing the flow geometry in the matrix. Fracture storage capacity was neglected relying on previous findings that bilinear flow is associated with a quasi-steady flow in the fracture. Numerical results were generalized by dimensionless presentation. Definition of a dimensionless time that, other than in previous approaches, does not use geometrical parameters of the fracture permitted identifying the dimensionless well pressure for the infinitely long fracture as the master curve for type curves of all fractures with finite length from the beginning of bilinear flow up to fully developed radial flow. In log–log scale the master curve's logarithmic derivative initially follows a 1/4-slope straight line (characteristic for bilinear flow) and gradually bends into a horizontal line (characteristic for radial flow) for long times. During the bilinear flow period, isobars normalized to well pressure propagate with the fourth and second root of time in fracture and matrix, respectively. The width-to-length ratio of the pressure field increases proportional to the fourth root of time during the bilinear period, and starts to deviate from this relation close to the deviation of well pressure and its derivative from their fourth-root-of-time relations. At this time, isobars are already significantly inclined with respect to the fracture. The type curves of finite fractures all deviate counterclockwise from the master curve instead of clockwise or counterclockwise from the 1/4-slope straight line as previously proposed. The counterclockwise deviation from the master curve was identified as the arrival of a normalized isobar reflected at the fracture tip 16 times earlier. Nevertheless, two distinct regimes were found in regard to pressure at the fracture tip when bilinear flow ends. For dimensionless fracture conductivities TD < 1, a significant pressure increase is not observed at the fracture tip until bilinear flow is succeeded by radial flow at a fixed dimensionless time. For TD > 10, the pressure at the fracture tip has reached substantial fractions of the associated change in well pressure when the flow field transforms towards intermittent formation linear flow at times that scale inversely with the fourth power of dimensionless fracture conductivity. Our results suggest that semi-log plots of normalized well pressure provide a means for the determination of hydraulic parameters of fracture and matrix after shorter test duration than for conventional analysis.
  • Item
    Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Zeeden, Christian; Obreht, Igor; Veres, Daniel; Kaboth-Bahr, Stefanie; Hošek, Jan; Marković, Slobodan B.; Bösken, Janina; Lehmkuhl, Frank; Rolf, Christian; Hambach, Ulrich
    Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of δ18O data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last ~15 ka and between ~50–30 ka. Between ~30–15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records. © 2020, The Author(s).
  • Item
    Drilling Overdeepened Alpine Valleys (ICDP-DOVE): Quantifying the age, extent, and environmental impact of Alpine glaciations
    (Sapporo : IODP, 2022) Anselmetti, Flavio S.; Bavec, Milos; Crouzet, Christian; Fiebig, Markus; Gabriel, Gerald; Preusser, Frank; Ravazzi, Cesare
    The sedimentary infill of glacially overdeepened valleys (i.e., structures eroded below the fluvial base level) is an excellent but yet underexplored archive with regard to the age, extent, and nature of past glaciations. The ICDP project DOVE (Drilling Overdeepened Alpine Valleys) Phase 1 investigates a series of drill cores from glacially overdeepened troughs at several locations along the northern front of the Alps. All sites will be investigated with regard to several aspects of environmental dynamics during the Quaternary, with focus on the glaciation, vegetation, and landscape history. Geophysical methods (e.g., seismic surveys), for example, will explore the geometry of overdeepened structures to better understand the process of overdeepening. Sedimentological analyses combined with downhole logging, analysis of biological remains, and state-of-the-art geochronological methods, will enable us to reconstruct the erosion and sedimentation history of the overdeepened troughs. This approach is expected to yield significant novel data quantifying the extent and timing of Middle and Late Pleistocene glaciations of the Alps. In a first phase, two sites were drilled in late 2021 into filled overdeepenings below the paleolobe of the Rhine Glacier, and both recovered a trough filling composed of multiphase glacial sequences. Fully cored Hole 5068_1_C reached a depth of 165m and recovered 10m molasse bedrock at the base. This hole will be used together with two flush holes (5068_1_A, 5068_1_B) for further geophysical cross-well experiments. Site 5068_2 reached a depth of 255m and bottomed out near the soft rock-bedrock contact. These two sites are complemented by three legacy drill sites that previously recovered filled overdeepenings below the more eastern Alpine Isar-Loisach, Salzach, and Traun paleoglacier lobes (5068_3, 5068_4, 5068_5). All analysis and interpretations of this DOVE Phase 1 will eventually lay the ground for an upcoming Phase 2 that will complete the pan-Alpine approach. This follow-up phase will investigate overdeepenings formerly occupied by paleoglacier lobes from the western and southern Alpine margins through drilling sites in France, Italy, and Slovenia. Available geological information and infrastructure make the Alps an ideal area to study overdeepened structures; however, the expected results of this study will not be restricted to the Alps. Such features are also known from other formerly glaciated mountain ranges, which are less studied than the Alps and more problematic with regards to drilling logistics. The results of this study will serve as textbook concepts to understand a full range of geological processes relevant to formerly glaciated areas all over our planet.