Search Results

Now showing 1 - 10 of 50
  • Item
    Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene
    (London : Nature Publishing Group, 2017) Liu, F.; Krylov, D.S.; Spree, L.; Avdoshenko, S.M.; Samoylova, N.A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Büchner, B.; Popov, A.A.
    Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.
  • Item
    Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)
    (Wyoming, NSW : Ivyspring, 2021) Strobbia, Pietro; Cupil-Garcia, Vanessa; Crawford, Bridget M.; Fales, Andrew M.; Pfefer, T. Joshua; Liu, Yang; Maiwald, Martin; Sumpf, Bernd; Vo-Dinh, Tuan
    For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
  • Item
    Immersionmode ice nucleationmeasurements with the new Portable Immersion Mode Cooling chAmber (PIMCA)
    (Hoboken, NJ : Wiley, 2016) Kohn, Monika; Lohmann, Ulrike; Welti, André; Kanji, Zamin A.
    The new Portable Immersion Mode Cooling chAmber (PIMCA) has been developed for online immersion freezing of single-immersed aerosol particles. PIMCA is a vertical extension of the established Portable Ice Nucleation Chamber (PINC). PIMCA immerses aerosol particles into cloud droplets before they enter PINC. Immersion freezing experiments on cloud droplets with a radius of 5–7 μm at a prescribed supercooled temperature (T) and water saturation can be conducted, while other ice nucleation mechanisms (deposition, condensation, and contact mode) are excluded. Validation experiments on reference aerosol (kaolinite, ammonium sulfate, and ammonium nitrate) showed good agreement with theory and literature. The PIMCA-PINC setup was tested in the field during the Zurich AMBient Immersion freezing Study (ZAMBIS) in spring 2014 in Zurich, Switzerland. Significant concentrations of submicron ambient aerosol triggering immersion freezing at T > 236 K were rare. The mean frozen cloud droplet number concentration was estimated to be 7.22·105 L−1 for T < 238 K and determined from the measured frozen fraction and cloud condensation nuclei (CCN) concentrations predicted for the site at a typical supersaturation of SS = 0.3%. This value should be considered as an upper limit of cloud droplet freezing via immersion and homogeneous freezing processes. The predicted ice nucleating particle (INP) concentration based on measured total aerosol larger than 0.5 μm and the parameterization by DeMott et al. (2010) at T = 238 K is INPD10=54 ± 39 L−1. This is a lower limit as supermicron particles were not sampled with PIMCA-PINC during ZAMBIS.
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
  • Item
    Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments
    (London : Nature Publishing Group, 2019) Vollmer, M.; Arold, T.; Kriegel, M.J.; Klemm, V.; Degener, S.; Freudenberger, J.; Niendorf, T.
    Iron-based shape memory alloys are promising candidates for large-scale structural applications due to their cost efficiency and the possibility of using conventional processing routes from the steel industry. However, recently developed alloy systems like Fe–Mn–Al–Ni suffer from low recoverability if the grains do not completely cover the sample cross-section. To overcome this issue, here we show that small amounts of titanium added to Fe–Mn–Al–Ni significantly enhance abnormal grain growth due to a considerable refinement of the subgrain sizes, whereas small amounts of chromium lead to a strong inhibition of abnormal grain growth. By tailoring and promoting abnormal grain growth it is possible to obtain very large single crystalline bars. We expect that the findings of the present study regarding the elementary mechanisms of abnormal grain growth and the role of chemical composition can be applied to tailor other alloy systems with similar microstructural features.
  • Item
    Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions
    (London : Nature Publishing Group, 2017) Keil, R.; Zopf, M.; Chen, Y.; Höfer, B.; Zhang, J.; Ding, F.; Schmidt, O.G.
    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.
  • Item
    Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
    (London : Nature Publ. Group, 2017) Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  • Item
    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
    ([London] : Nature Publishing Group UK, 2020) He, Yongmin; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu, Chao; Wang, Luqing; Zeng, Qingsheng; Golani, Prafful; Gao, Guanhui; Fu, Wei; Huang, Zhiqi; Gao, Caitian; Xia, Juan; Wang, Xingli; Wang, Xuewen; Zhu, Chao; Ramasse, Quentin M.; Zhang, Ao; An, Boxing; Zhang, Yongzhe; Martí-Sánchez, Sara; Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang; Yakobson, Boris I.; Trampert, Achim; Zhang, Hua; Wu, Minghong; Wang, Qi Jie; Arbiol, Jordi; Liu, Zheng
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.
  • Item
    Physiological Parameters Relevant to Dissolution Testing - Hydrodynamic Considerations (rev. and suppl. version)
    (Tübingen : Universitätsbibliothek Tübingen, 2023) Diebold, Steffen M.
    The first two sections of the monograph present an introduction into basic hydrodynamics relevant to in vitro dissolution testing including V. G. Levichs convective diffusion theory and the authors combination model. This part is followed by hydrodynamic considerations of in vivo dissolution including hydrodynamic problems inherent to in vivo bioavailability of solid oral dosage forms. Hydrodynamics in the upper GI tract contribute to in vivo dissolution. Our ability to forecast dissolution of poorly soluble drugs in vitro depends on our knowledge of and ability to control hydrodynamics as well as other factors influencing dissolution. Provided suitable conditions (apparatus, hydrodynamics, media) are chosen for the dissolution test, it seems possible to predict dissolution limitations to the oral absorption of drugs and to reflect variations in hydrodynamic conditions in the upper GI tract. The fluid volume available for dissolution in the gut lumen, the contact time of the dissolved compound with the absorptive sites and the particle size have been identified as the main hydrodynamic determinants for the absorption of poorly soluble drugs in vivo. The influence of these factors is usually more pronounced than that of the motility pattern or the gastrointestinal flow rates per se.
  • Item
    Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols
    ([London] : Nature Publishing Group UK, 2018) Brüggemann, Martin; Hayeck, Nathalie; George, Christian
    The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.