Search Results

Now showing 1 - 6 of 6
  • Item
    Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry
    (Amsterdam [u.a.] : Elsevier, 2015) Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.
    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.
  • Item
    Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters
    ([London] : Nature Publishing Group UK, 2017) Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F.; Fennel, Thomas
    In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.
  • Item
    Raman gas self-organizing into deep nano-trap lattice
    ([London] : Nature Publishing Group UK, 2016) Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.
    Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb-Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing.
  • Item
    Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
    (Munich : EGU, 2013) Igel, J.; Günther, T.; Kuntzer, M.
    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.
  • Item
    Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer
    (Katlenburg-Lindau : Copernicus, 2017) Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar
    The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4% for most channels within a 95% confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4% on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95% confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.
  • Item
    Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
    ([London] : Nature Publishing Group UK, 2017) Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J. Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud
    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-Angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.