Search Results

Now showing 1 - 3 of 3
  • Item
    Flexible modification of Gauss--Newton method and its stochastic extension
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Yudin, Nikita; Gasnikov, Alexander
    This work presents a novel version of recently developed Gauss--Newton method for solving systems of nonlinear equations, based on upper bound of solution residual and quadratic regularization ideas. We obtained for such method global convergence bounds and under natural non-degeneracy assumptions we present local quadratic convergence results. We developed stochastic optimization algorithms for presented Gauss--Newton method and justified sub-linear and linear convergence rates for these algorithms using weak growth condition (WGC) and Polyak--Lojasiewicz (PL) inequality. We show that Gauss--Newton method in stochastic setting can effectively find solution under WGC and PL condition matching convergence rate of the deterministic optimization method. The suggested method unifies most practically used Gauss--Newton method modifications and can easily interpolate between them providing flexible and convenient method easily implementable using standard techniques of convex optimization.
  • Item
    Zeroth-order algorithms for smooth saddle-point problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Sadiev, Abdurakhmon; Beznosikov, Aleksandr; Dvurechensky, Pavel; Gasnikov, Alexander
    Saddle-point problems have recently gained an increased attention from the machine learning community, mainly due to applications in training Generative Adversarial Networks using stochastic gradients. At the same time, in some applications only a zeroth-order oracle is available. In this paper, we propose several algorithms to solve stochastic smooth (strongly) convex-concave saddle- point problems using zeroth-order oracles, and estimate their convergence rate and its dependence on the dimension n of the variable. In particular, our analysis shows that in the case when the feasible set is a direct product of two simplices, our convergence rate for the stochastic term is only by a log n factor worse than for the first-order methods. We also consider a mixed setup and develop 1/2th-order methods which use zeroth-order oracle for the minimization part and first-order oracle for the maximization part. Finally, we demonstrate the practical performance of our zeroth-order and 1/2th-order methods on practical problems.
  • Item
    Inexact tensor methods and their application to stochastic convex optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Agafonov, Artem; Kamzolov, Dmitry; Dvurechensky, Pavel; Gasnikov, Alexander
    We propose a general non-accelerated tensor method under inexact information on higher- order derivatives, analyze its convergence rate, and provide sufficient conditions for this method to have similar complexity as the exact tensor method. As a corollary, we propose the first stochastic tensor method for convex optimization and obtain sufficient mini-batch sizes for each derivative.