Search Results

Now showing 1 - 10 of 29
  • Item
    Green transition, investment horizon, and dynamic portfolio decisions
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Semmler, Willi; Lessmann, Kai; Tahri, Ibrahim; Braga, Joao Paulo; Boros, Endre
    This paper analyzes the implications of investors’ short-term oriented asset holding and portfolio decisions (or short-termism), and its consequences on green investments. We adopt a dynamic portfolio model, which contrary to conventional static mean-variance models, allows us to study optimal portfolios for different decision horizons. Our baseline model contains two assets, one asset with fluctuating returns and another asset with a constant risk-free return. The asset with fluctuating returns can arise from fossil-fuel based sectors or from clean energy related sectors. We consider different drivers of short-termism: the discount rate, the nature of discounting (exponential vs. hyperbolic), and the decision horizon of investors itself. We study first the implications of these determinants of short-termism on the portfolio wealth dynamics of the baseline model. We find that portfolio wealth declines faster with a higher discount rate, with hyperbolic discounting, and with shorter decision horizon. We extend our model to include a portfolio of two assets with fluctuating returns. For both model variants, we explore the cases where innovation efforts are spent on fossil fuel or clean energy sources. Detailing dynamic portfolio decisions in such a way may allow us for better pathways to empirical tests and may provide guidance to some online financial decision making.
  • Item
    Inverse learning in Hilbert scales
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Rastogi, Abhishake; Mathé, Peter
    We study linear ill-posed inverse problems with noisy data in the framework of statistical learning. The corresponding linear operator equation is assumed to fit a given Hilbert scale, generated by some unbounded self-adjoint operator. Approximate reconstructions from random noisy data are obtained with general regularization schemes in such a way that these belong to the domain of the generator. The analysis has thus to distinguish two cases, the regular one, when the true solution also belongs to the domain of the generator, and the ‘oversmoothing’ one, when this is not the case. Rates of convergence for the regularized solutions will be expressed in terms of certain distance functions. For solutions with smoothness given in terms of source conditions with respect to the scale generating operator, then the error bounds can then be made explicit in terms of the sample size.
  • Item
    Integrating climate change adaptation in coastal governance of the Barcelona metropolitan area
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Sauer, Inga J.; Roca, Elisabet; Villares, Míriam
    Coastal cities are exposed to high risks due to climate change, as they are potentially affected by both rising sea levels and increasingly intense and frequent coastal storms. Socio-economic drivers also increase exposure to natural hazards, accelerate environmental degradation, and require adaptive governance structures to moderate negative impacts. Here, we use a social network analysis (SNA) combined with further qualitative information to identify barriers and enablers of adaptive governance in the Barcelona metropolitan area. By analyzing how climate change adaptation is mainstreamed between different administrative scales as well as different societal actors, we can determine the governance structures and external conditions that hamper or foster strategical adaptation plans from being used as operational adaptation tools. We identify a diverse set of stakeholders acting at different administrative levels (local to national), in public administration, science, civil society, and the tourism economy. The metropolitan administration acts as an important bridging organization by promoting climate change adaptation to different interest groups and by passing knowledge between actors. Nonetheless, national adaptation planning fails to take into account local experiences in coastal protection, which leads to an ineffective science policy interaction and limits adaptive management and learning opportunities. Overcoming this is difficult, however, as the effectiveness of local adaptation strategies in the Barcelona metropolitan area is very limited due to a strong centralization of power at the national level and a lack of polycentricity. Due to the high touristic pressure, the legal framework is currently oriented to primarily meet the demands of recreational use and tourism, prioritizing these aspects in daily management practice. Therefore, touristic and economic activities need to be aligned to adaptation efforts, to convert them from barriers into drivers for adaptation action. Our work strongly suggests that more effectively embedding adaptation planning and action into existing legal structures of coastal management would allow strategic adaptation plans to be an effective operational tool for local coastal governance.
  • Item
    Cyclostratigraphy and paleoenvironmental inference from downhole logging of sediments in tropical Lake Towuti, Indonesia
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Ulfers, A.; Hesse, K.; Zeeden, C.; Russell, J.M.; Vogel, H.; Bijaksana, S.; Wonik, T.
    Lake Towuti is located on central Sulawesi/Indonesia, within the Indo Pacific Warm Pool, a globally important region for atmospheric heat and moisture budgets. In 2015 the Towuti Drilling Project recovered more than 1000 m of drill core from the lake, along with downhole geophysical logging data from two drilling sites. The cores constitute the longest continuous lacustrine sediment succession from the Indo Pacific Warm Pool. We combined lithological descriptions with borehole logging data and used multivariate statistics to better understand the cyclic sequence, paleoenvironments, and geochronology of these sediments. Accurate chronologies are crucial to analyze and interpret paleoclimate records. Astronomical tuning can help build age-depth models and fill gaps between age control points. Cyclostratigraphic investigations were conducted on a downhole magnetic susceptibility log from the lacustrine facies (10–98 m below lake floor) from a continuous record of sediments in Lake Towuti. This study provides insights into the sedimentary history of the basin between radiometric ages derived from dating a tephra layer (~ 797 ka) and C14-ages (~ 45 ka) in the cores. We derived an age model that spans from late marine isotope stage (MIS) 23 to late MIS 6 (903 ± 11 to 131 ± 67 ka). Although uncertainties caused by the relatively short record and the small differences in the physical properties of sediments limited the efficacy of our approach, we suggest that eccentricity cycles and/or global glacial-interglacial climate variability were the main drivers of local variations in hydroclimate in central Indonesia. We generated the first nearly complete age-depth model for the lacustrine facies of Lake Towuti and examined the potential of geophysical downhole logging for time estimation and lithological description. Future lake drilling projects will benefit from this approach, since logging data are available just after the drilling campaign, whereas core descriptions, though more resolved, only become available months to years later.
  • Item
    Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Hintermüller, Michael; Stengl, Steven-Marian; Surowiec, Thomas M.
    The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.
  • Item
    Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rowolt, Christian; Milkereit, Benjamin; Springer, Armin; Kreyenschulte, Carsten; Kessler, Olaf
    Continuous heating transformation (CHT) diagrams and continuous cooling transformation (CCT) diagrams of precipitation-hardening steels have the drawback that important information on the dissolution and precipitation of Cu-rich phases during continuous heating and cooling are missing. This work uses a comparison of different techniques, namely dilatometry and differential scanning calorimetry for the in situ analysis of the so far neglected dissolution and precipitation of Cu-rich phases during continuous heating and cooling to overcome these drawbacks. Compared to dilatometry, DSC is much more sensitive to phase transformation affecting small volume fractions, like precipitation. Thus, the important solvus temperature for the dissolution of Cu-rich phases was revealed from DSC and integrated into the CHT diagram. Moreover, DSC reveals that during continuous cooling from solution treatment, premature Cu-rich phases may form depending on cooling rate. Those quench-induced precipitates were analysed for a broad range of cooling rates and imaged for microstructural analysis using optical microscopy, scanning electron microscopy and transmission electron microscopy. This information substantially improves the CCT diagram.
  • Item
    On the Stokes-Type Resolvent Problem Associated with Time-Periodic Flow Around a Rotating Obstacle
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Eiter, Thomas
    Consider the resolvent problem associated with the linearized viscous flow around a rotating body. Within a setting of classical Sobolev spaces, this problem is not well posed on the whole imaginary axis. Therefore, a framework of homogeneous Sobolev spaces is introduced where existence of a unique solution can be guaranteed for every purely imaginary resolvent parameter. For this purpose, the problem is reduced to an auxiliary problem, which is studied by means of Fourier analytic tools in a group setting. In the end, uniform resolvent estimates can be derived, which lead to the existence of solutions to the associated time-periodic linear problem.
  • Item
    Precipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolution
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Weber, Louis; Webel, Johannes; Mücklich, Frank; Kraus, Tobias
    Particle number densities are a crucial parameter in the microstructure engineering of microalloyed steels. We introduce a new method to determine nanoscale precipitate number densities of macroscopic samples that is based on the matrix dissolution technique (MDT) and combine it with atom probe tomography (APT). APT counts precipitates in microscopic samples of niobium and niobium-titanium microalloyed steels. The new method uses MDT combined with analytical ultracentrifugation (AUC) of extracted precipitates, inductively coupled plasma–optical emission spectrometry, and APT. We compare the precipitate number density ranges from APT of 137.81 to 193.56 × 1021 m−3 for the niobium steel and 104.90 to 129.62 × 1021 m−3 for the niobium-titanium steel to the values from MDT of 2.08 × 1021 m−3 and 2.48 × 1021 m−3. We find that systematic errors due to undesired particle loss during extraction and statistical uncertainties due to the small APT volumes explain the differences. The size ranges of precipitates that can be detected via APT and AUC are investigated by comparison of the obtained precipitate size distributions with transmission electron microscopy analyses of carbon extraction replicas. The methods provide overlapping resulting ranges. MDT probes very large numbers of small particles but is limited by errors due to particle etching, while APT can detect particles with diameters below 10 nm but is limited by small-number statistics. The combination of APT and MDT provides comprehensive data which allows for an improved understanding of the interrelation between thermo-mechanical controlled processing parameters, precipitate number densities, and resulting mechanical-technological material properties. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    Resistance of the Montgomery Ladder Against Simple SCA: Theory and Practice
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Kabin, Ievgen; Dyka, Zoya; Klann, Dan; Aftowicz, Marcin; Langendoerfer, Peter
    The Montgomery kP algorithm i.e. the Montgomery ladder is reported in literature as resistant against simple SCA due to the fact that the processing of each key bit value of the scalar k is done using the same sequence of operations. We implemented the Montgomery kP algorithm using Lopez-Dahab projective coordinates for the NIST elliptic curve B-233. We instantiated the same VHDL code for a wide range of clock frequencies for the same target FPGA and using the same compiler options. We measured electromagnetic traces of the kP executions using the same input data, i.e. scalar k and elliptic curve point P, and measurement setup. Additionally, we synthesized the same VHDL code for two IHP CMOS technologies, for a broad spectrum of frequencies. We simulated the power consumption of each synthesized design during an execution of the kP operation, always using the same scalar k and elliptic curve point P as inputs. Our experiments clearly show that the success of simple electromagnetic analysis attacks against FPGA implementations as well as the one of simple power analysis attacks against synthesized ASIC designs depends on the target frequency for which the design was implemented and at which it is executed significantly. In our experiments the scalar k was successfully revealed via simple visual inspection of the electromagnetic traces of the FPGA for frequencies from 40 to 100 MHz when standard compile options were used as well as from 50 MHz up to 240 MHz when performance optimizing compile options were used. We obtained similar results attacking the power traces simulated for the ASIC. Despite the significant differences of the here investigated technologies the designs’ resistance against the attacks performed is similar: only a few points in the traces represent strong leakage sources allowing to reveal the key at very low and very high frequencies. For the “middle” frequencies the number of points which allow to successfully reveal the key increases when increasing the frequency.
  • Item
    Analysis of the compressible, isotropic, neo-Hookean hyperelastic model
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2023) Kossa, Attila; Valentine, Megan T.; McMeeking, Robert M.
    The most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.