Search Results

Now showing 1 - 10 of 18
Loading...
Thumbnail Image
Item

Climate change and international migration: Exploring the macroeconomic channel

2022, Rikani, Albano, Frieler, Katja, Schewe, Jacob

International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3°C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.

Loading...
Thumbnail Image
Item

Combining ambitious climate policies with efforts to eradicate poverty

2021, Soergel, Bjoern, Kriegler, Elmar, Bodirsky, Benjamin Leon, Bauer, Nico, Leimbach, Marian, Popp, Alexander

Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.

Loading...
Thumbnail Image
Item

Diverging importance of drought stress for maize and winter wheat in Europe

2018, Webber, Heidi, Ewert, Frank, Olesen, Jørgen E., Müller, Christoph, Fronzek, Stefan, Ruane, Alex C., Bourgault, Maryse, Martre, Pierre, Ababaei, Behnam, Bindi, Marco, Ferrise, Roberto, Finger, Robert, Fodor, Nándor, Gabaldón-Leal, Clara, Gaiser, Thomas, Jabloun, Mohamed, Kersebaum, Kurt-Christian, Lizaso, Jon I., Lorite, Ignacio J., Manceau, Loic, Moriondo, Marco, Nendel, Claas, Rodríguez, Alfredo, Ruiz-Ramos, Margarita, Semenov, Mikhail A., Siebert, Stefan, Stella, Tommaso, Stratonovitch, Pierre, Trombi, Giacomo, Wallach, Daniel

Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.

Loading...
Thumbnail Image
Item

Paris Climate Agreement passes the cost-benefit test

2020, Glanemann, Nicole, Willner, Sven N., Levermann, Anders

The Paris Climate Agreement aims to keep temperature rise well below 2 °C. This implies mitigation costs as well as avoided climate damages. Here we show that independent of the normative assumptions of inequality aversion and time preferences, the agreement constitutes the economically optimal policy pathway for the century. To this end we consistently incorporate a damage-cost curve reproducing the observed relation between temperature and economic growth into the integrated assessment model DICE. We thus provide an inter-temporally optimizing cost-benefit analysis of this century’s climate problem. We account for uncertainties regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The resulting optimal temperature is robust as can be understood from the generic temperature-dependence of the mitigation costs and the level of damages inferred from the observed temperature-growth relationship. Our results show that the politically motivated Paris Climate Agreement also represents the economically favourable pathway, if carried out properly.

Loading...
Thumbnail Image
Item

Climate signals in river flood damages emerge under sound regional disaggregation

2021, Sauer, Inga J., Reese, Ronja, Otto, Christian, Geiger, Tobias, Willner, Sven N., Guillod, Benoit P., Bresch, David N., Frieler, Katja

Climate change affects precipitation patterns. Here, we investigate whether its signals are already detectable in reported river flood damages. We develop an empirical model to reconstruct observed damages and quantify the contributions of climate and socio-economic drivers to observed trends. We show that, on the level of nine world regions, trends in damages are dominated by increasing exposure and modulated by changes in vulnerability, while climate-induced trends are comparably small and mostly statistically insignificant, with the exception of South & Sub-Saharan Africa and Eastern Asia. However, when disaggregating the world regions into subregions based on river-basins with homogenous historical discharge trends, climate contributions to damages become statistically significant globally, in Asia and Latin America. In most regions, we find monotonous climate-induced damage trends but more years of observations would be needed to distinguish between the impacts of anthropogenic climate forcing and multidecadal oscillations.

Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Adaptive responses of animals to climate change are most likely insufficient

2019, Radchuk, Viktoriia, Reed, Thomas, Teplitsky, Céline, van de Pol, Martijn, Charmantier, Anne, Hassall, Christopher, Adamík, Peter, Adriaensen, Frank, Ahola, Markus P., Arcese, Peter, Avilés, Jesús Miguel, Balbontin, Javier, Berg, Karl S., Borras, Antoni, Burthe, Sarah, Clobert, Jean, Dehnhard, Nina, de Lope, Florentino, Dhondt, André A., Dingemanse, Niels J., Doi, Hideyuki, Eeva, Tapio, Fickel, Joerns, Filella, Iolanda, Fossøy, Frode, Goodenough, Anne E., Hall, Stephen J. G., Hansson, Bengt, Harris, Michael, Hasselquist, Dennis, Hickler, Thomas, Joshi, Jasmin, Kharouba, Heather, Martínez, Juan Gabriel, Mihoub, Jean-Baptiste, Mills, James A., Molina-Morales, Mercedes, Moksnes, Arne, Ozgul, Arpat, Parejo, Deseada, Pilard, Philippe, Poisbleau, Maud, Rousset, Francois, Rödel, Mark-Oliver, Scott, David, Senar, Juan Carlos, Stefanescu, Constanti, Stokke, Bård G., Kusano, Tamotsu, Tarka, Maja, Tarwater, Corey E., Thonicke, Kirsten, Thorley, Jack, Wilting, Andreas, Tryjanowski, Piotr, Merilä, Juha, Sheldon, Ben C., Pape Møller, Anders, Matthysen, Erik, Janzen, Fredric, Dobson, F. Stephen, Visser, Marcel E., Beissinger, Steven R., Courtiol, Alexandre, Kramer-Schadt, Stephanie

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Alternative carbon price trajectories can avoid excessive carbon removal

2021, Strefler, Jessica, Kriegler, Elmar, Bauer, Nico, Luderer, Gunnar, Pietzcker, Robert C., Giannousakis, Anastasis, Edenhofer, Ottmar

The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.

Loading...
Thumbnail Image
Item

Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

2019, Luderer, Gunnar, Pehl, Michaja, Arvesen, Anders, Gibon, Thomas, Bodirsky, Benjamin L., de Boer, Harmen Sytze, Fricko, Oliver, Hejazi, Mohamad, Humpenöder, Florian, Iyer, Gokul, Mima, Silvana, Mouratiadou, Ioanna, Pietzcker, Robert C., Popp, Alexander, van den Berg, Maarten, van Vuuren, Detlef, Hertwich, Edgar G.

A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy.

Loading...
Thumbnail Image
Item

Reply to Burgess et al: Catastrophic climate risks are neglected, plausible, and safe to study

2022, Kemp, Luke, Xu, Chi, Depledge, Joanna, Ebi, Kristie L., Gibbins, Goodwin, Kohler, Timothy A., Rockström, Johan, Scheffer, Marten, Schellnhuber, Hans Joachim, Steffen, Will, Lenton, Timothy M.