Search Results

Now showing 1 - 10 of 405
  • Item
    Tris(η5-cyclopentadienyl)hafnium(III)
    (Chester : International Union of Crystallography, 2011) Burlakov, V.V.; Arndt, P.; Spannenberg, A.; Rosenthal, U.
    In the crystal structure of the title compound, [Hf(C5H 5)3], three cyclopentadienyl ligands surround the Hf III atom in a trigonal-planar geometry. The molecule lies on a sixfold inversion axis.
  • Item
    Ethyl 4-chloro-2′-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate
    (Chester : International Union of Crystallography, 2011) Adeel, M.; Langer, P.; Villinger, A.
    In the title compound, C 16H 14ClFO 3, the dihedral angle between the mean planes of the two benzene rings is 71.50 (5)°. Due to an intramolecular O - H⋯O hydrogen bond between the hydroxy group and the carbonyl O atom of the ethyl ester group, the ethyl ester group lies within the ring plane. The crystal structure is consolidated by intermolecular C - H⋯O and C - H⋯F interactions.
  • Item
    (Isopropyl-amino)(meth-yl)diphenyl-phospho-nium iodide
    (Chester : International Union of Crystallography, 2011) Peulecke, N.; Peitz, S.; Müller, B.H.; Spannenberg, A.; Rosenthal, U.
    The title compound, C 16H 21NP +· I -, was obtained by the reaction of PH 2PN( iPr)P(Ph)N( iPr)H with MeI involving cleavage of one of the P - N bonds in diethyl ether. The two phenyl rings form a dihedral angle of 82.98 (5)°. A weak donor-acceptor N - H⋯I inter-action is observed.
  • Item
    Tris(tetrahydrofuran-kO)tris[tris(thio-phen-2-yl)methanolato-kO]terbium(III)tetrahydrofuran monosolvate
    (Chester : International Union of Crystallography, 2011) Veith, Michael; Belot, Celine; Huch, Volker
    In the mononuclear title compound, [Tb(C13H9OS3)3(C4H8O)3]·C4H8O, the lanthanide cation is located on a threefold rotation axis and is surrounded by electron-rich ligands in an approximately octahedral geometry. One of the thienyl groups and the bound THF are disordered with 0.5:0.5 occupancy. The free THF is disordered around the threefold axis.
  • Item
    2,6-Bis[(S)-4-benzyl-4,5-dihydro-1,3-oxazol-2-yl]pyridine
    (Chester : International Union of Crystallography, 2011) Möller, K.; Junge, K.; Spannenberg, A.; Beller, M.
    The commercially available title compound, C25H 23N3O2, has been known since 1993 [Nesper et al. (1993). Helv. Chim. Acta, 76, 2239-2249], but has not been structurally characterized until now. In the free ligand, the N atoms of both oxazoline rings point in opposite directions. The phenyl rings make dihedral angles of 30.56 (5) and 84.57 (3)° with the pyridine ring and 72.85 (3)° with each other.
  • Item
    N,P,P-Triisopropyl-phosphinic amide
    (Chester : International Union of Crystallography, 2011) Peulecke, N.; Aluri, B.R.; Müller, B.H.; Spannenberg, A.; Rosenthal, U.
    The title compound, C9H22NOP, was obtained by slow diffusion of oxygen into a toluene solution of iPr2PNHiPr. In the crystal, an inter-molecular N - H⋯O hydrogen bond occurs.
  • Item
    Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
    (München : European Geopyhsical Union, 2011) Massling, A.; Niedermeier, N.; Hennig, T.; Fors, E.O.; Swietlicki, E.; Ehn, M.; Hämeri, K.; Villani, P.; Laj, P.; Good, N.; McFiggans, G.; Wiedensohler, A.
    The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/−13% to +8/−6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 °C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.
  • Item
    Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer
    (München : European Geopyhsical Union, 2011) Müller, T.; Laborde, M.; Kassell, G.; Wiedensohler, A.
    Integrating nephelometers are instruments that directly measure a value close to the light scattering coefficient of airborne particles. Different models of nephelometers have been used for decades for monitoring and research applications. Now, a series of nephelometers (Ecotech models M9003, Aurora 1000 and Aurora 3000) with newly designed light sources based on light emitting diodes are available. This article reports on the design of these integrating nephelometers and a comparison of the Aurora 3000 to another commercial instrument (TSI model 3563) that uses an incandescent lamp. Both instruments are three-wavelength, total and backscatter integrating nephelometers. We present a characterization of the new light source design of the Aurora 3000 and provide parameterizations for its angular sensitivity functions. These parameterizations facilitate to correct for measurement artefacts using Mie-theory. Furthermore, correction factors are provided as a function of the Ångström exponent. Comparison measurements against the TSI 3563 with laboratory generated white particles and ambient air are also shown and discussed. Both instruments agree well within the calibration uncertainties and detection limit for total scattering with differences less than 5 %. Differences for backscattering are higher by up to 11 %. Highest differences were found for the longest wavelengths, where the signal to noise ratio is lowest. Differences at the blue and green wavelengths are less than 4 % and 3 %, respectively, for both total and backscattering.
  • Item
    Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
    (München : European Geopyhsical Union, 2011) Held, A.; Orsini, D.A.; Vaattovaara, P.; Tjernström, M.; Leck, C.
    Temperature and particle number concentration profiles were measured at small height intervals above open and frozen leads and snow surfaces in the central Arctic. The device used was a gradient pole designed to investigate potential particle sources over the central Arctic Ocean. The collected data were fitted according to basic logarithmic flux-profile relationships to calculate the sensible heat flux and particle deposition velocity. Independent measurements by the eddy covariance technique were conducted at the same location. General agreement was observed between the two methods when logarithmic profiles could be fitted to the gradient pole data. In general, snow surfaces behaved as weak particle sinks with a maximum deposition velocity vd = 1.3 mm s−1 measured with the gradient pole. The lead surface behaved as a weak particle source before freeze-up with an upward flux Fc = 5.7 × 104 particles m−2 s−1, and as a relatively strong heat source after freeze-up, with an upward maximum sensible heat flux H = 13.1 W m−2. Over the frozen lead, however, we were unable to resolve any significant aerosol profiles.