Search Results

Now showing 1 - 10 of 33
  • Item
    Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Cierpka, Christian
    [no abstract available]
  • Item
    Molecular beam epitaxy of GaAs nanowires and their suitability for optoelectronic applications – comparing Au- and self-assisted growth methods
    (Berlin : Humboldt-Universität zu Berlin, 2011) Breuer, Steffen
    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1\% is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.
  • Item
    Steps towards a GaN nanowire based light emitting diode and its integration with Si-MOS technology
    (Berlin : Humboldt-Universität zu Berlin, 2012) Limbach, Friederich
    his work is concerned with the realization and investigation of a light emitting diode (LED) structure within single GaN nanowires (NWs) and its integration with Si technology. To this end first a general understanding of the GaN NW growth is given. This is followed by investigations of the influence which doping species, such as Mg and Si, have on the growth of the NWs. The experience gathered in these studies set the basis for the synthesis of nominal p-i-n and n-i-p junctions in GaN NWs. Investigations of these structures resulted in the technologically important insight, that p-type doping with Mg is achieved best if it is done in the later NW growth stage. This implies that it is beneficial for a NW LED to place the p-type segment on the NW top. Another important component of an LED is the active zone where electron-hole recombination takes place. In the case of planar GaN LEDs, this is usually achieved by alloying Ga and In to form InGaN. In order to be able to control the growth under a variety of conditions, we investigate the growth of InGaN in the form of extended segments on top of GaN NWs, as well as multi quantum wells (MQWs) in GaN NWs. All the knowledge gained during these preliminary studies is harnessed to reach the overall goal: The realization of a GaN NW LED. Such structures are fabricated, investigated and processed into working LEDs. Finally, a report on the efforts of integrating III-nitride NW LEDs and Si based metal-oxide-semiconductor field effect transistor (MOSFET) technology is given. This demonstrates the feasibility of the monolithic integration of both devices on the same wafer at the same time.
  • Item
    Optical properties of single semiconductor nanowires and nanowire ensembles – probing surface physics by photoluminescence spectroscopy
    (Berlin : Humboldt-Universität zu Berlin, 2011) Pfüller, Carsten
    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. In the first part of the thesis, some of these features are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and self-assisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Sapphire, and ZnO substrates. The major part of this thesis discusses the optical properties of GaN NWs. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio and that each NW exhibits its own individual recombination behavior. An unexpected broadening of the donor-bound exciton transition is explained by the abundant presence of surface donors in NWs. The existence and statistical relevance of these surface donors is confirmed by PL experiments of single GaN NWs which are either dispersed or free-standing. Furthermore, the influence of electric fields on the optical properties of GaN NWs is investigated and the coupling of light with GaN NWs is studied by reflectance and Raman measurements. The central results of this thesis motivate the introduction of a model that explains the typically observed nonexponential recombination dynamics in NW ensembles. It is based on a distribution of recombination rates. Preliminary simulations using this model describe the nonexponential decay of GaN NW ensembles satisfactorily and allow for an estimation of their internal quantum efficiency.
  • Item
    Untersuchungen zum geordneten Wachstum von III-Nitrid Nanodrähten – Analyse der Nukleations-, Dekompositions- und Diffusionsmechanismen
    (Berlin : Humboldt-Universität zu Berlin, 2012) Gotschke, Tobias
    The influence of the Si- and Mg-doping of InN NWs as well as the selective area growth (SAG) of GaN NWs on Si substrates is developed, optimized and analyzed to obtain NWs with homogeneous periods, lengths and diameters. The variation of growth parameters for Si-doped InN NWs reveals a nonmonotonic morphology dependence and an extended growth window towards higher substrate temperatures. In addition, the NW density is reduced and the size homogeneity improved for high Si doping levels. In contrast, no impact on the morphology of the InN NWs is observed under Mg-doping. Nevertheless, indications of a successful incorporation of the Mg-acceptors are found by optical and electrical studies. The non-selective growth of GaN NWs at high substrate temperatures is investigated for various Ga-fluxes and substrate temperatures. Furthermore, the decomposition of GaN NWs is observed with an investigation of the NW morphology and the Ga desorption during growth. The nucleation on the mask (Si) and the substrate (AlN) is investigated with a new approach to define a growth window for the SAG. Within this window, the influence of the substrate temperature, growth time, Ga- and N-flux on the SAG is investigated by a separate variation for each parameter. An optimal set of growth parameters with respect to a homogeneous NW morphology is obtained. The growth on substrates with different mask types, mask materials and substrate materials reveals a novel nucleation mechanism. The asymmetric nucleation in the holes of the mask could be attributed to a local increase in the Ga-supply by blocking the impinging Ga-flux at the vertical sidewalls. The diffusion of Ga-atoms on the substrate and the NW is finally investigated. A descriptive model is proposed and the fit to experimental data reveals a diffusion length of 400 nm. The limitation of the axial growth is explained by the diffusion length of Ga atoms on the NW sidewall and a diffusion length of approximately 500 nm is obtained. Zugriffsstatistik:
  • Item
    The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and alumosilicates studied by in situ vibrational spectroscopy
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2010) Müller, Katharina
    [no abstract available]
  • Item
    Östrogennachweis in wässrigen Lösungen mit Hilfe Silizium-basierter Lichtemitter
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2010) Cherkouk, Charaf
    [no abstract available]
  • Item
    Oberflächenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2007) Mrotchek, Irina
    [no abstract available]
  • Item
    Ein Modell zur Beschreibung der Kühlmittelvermischung und seine Anwendung auf die Analyse von Borverdünnungstransienten in Druckwasserreaktoren
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2010) Kliem, Sören
    [no abstract available]
  • Item
    Fast digitizing and digital signal processing of detector signals
    (Dresden : Forschungszentrum Dresden-Rossendorf, 2009) Hannaske, Roland
    [no abstract available]