Search Results

Now showing 1 - 10 of 570
  • Item
    Impact of slippage on the morphology and stability of a dewetting rim
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Münch, Andreas; Wagner, Barbara
    In this study lubrication theory is used to describe the stability and morphology of the rim that forms as a thin polymer film dewets from a hydrophobized silicon wafer. Thin film equations are derived from the governing hydrodynamic equations for the polymer to enable the systematic mathematical and numerical analysis of the properties of the solutions for different regimes of slippage and for a range of time scales. Dewetting rates and the cross sectional profiles of the evolving rims are derived for these models and compared to experimental results. Experiments also show that the rim is typically unstable in the spanwise direction and develops thicker and thinner parts that may grow into ``fingers''. Linear stability analysis as well as nonlinear numerical solutions are presented to investigate shape and growth rate of the rim instability. It is demonstrated that the difference in morphology and the rate at which the instability develops can be directly attributed to the magnitude of slippage. Finally, a derivation is given for the dominant wavelength of the bulges along the unstable rim.
  • Item
    Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Bartels, Sören; Müller, Rüdiger
    A fully computable upper bound for the finite element approximation error of Allen-Cahn and Cahn-Hilliard equations with logarithmic potentials is derived. Numerical experiments show that for the sharp interface limit this bound is robust past topological changes. Modifications of the abstract results to derive quasi-optimal error estimates in different norms for lowest order finite element methods are discussed and lead to weaker conditions on the residuals under which the conditional error estimates hold.
  • Item
    Modeling and simulations of beam stabilization in edge-emitting broad area semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Radziunas, Mindaugas; Cˇ iegis, Raimondas
    A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented and implemented on a parallel compute cluster. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts
  • Item
    Moment asymptotics for branching random walks in random environment
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Gün, Onur; König, Wolfgang; Sekulov´c, Ozren
    We consider the long-time behaviour of a branching random walk in random environment on the lattice Zd. The migration of particles proceeds according to simple random walk in continuous time, while the medium is given as a random potential of spatially dependent killing/branching rates. The main objects of our interest are the annealed moments m_np , i.e., the p-th moments over the medium of the n-th moment over the migration and killing/branching, of the local and global population sizes. For n = 1, this is well-understood citeGM98, as m_1 is closely connected with the parabolic Anderson model. For some special distributions, citeA00 extended this to ngeq2, but only as to the first term of the asymptotics, using (a recursive version of) a Feynman-Kac formula for m_n. In this work we derive also the second term of the asymptotics, for a much larger class of distributions. In particular, we show that m_n^p m_1^np are asymptotically equal, up to an error e^o(t). The cornerstone of our method is a direct Feynman-Kac-type formula for mn, which we establish using the spine techniques developed in citeHR1.1
  • Item
    Bistability and hysteresis in an optically injected two-section semiconductor laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Pimenov, Alexander; Viktorov, Evgeniy A.; Hegarty, Stephen P.; Habruseva, Tatiana; Huyet, Guillaume; Rachinskii, Dmitrii; Vladimirov, Andrei G.
    The effect of coherent single frequency injection on two-section semiconductor lasers is studied numerically using a model based on a set of delay differential equations. The existence of bistability between different CW and non-stationary regimes of operation is demonstrated in the case of sufficiently large linewidth enhancement factors.
  • Item
    On multivariate chi-square distributions and their applications in testing multiple hypotheses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dickhaus, Thorsten; Royen, Thomas
    We are considered with three different types of multivariate chi-square distributions. Their members play important roles as limiting distributions of vectors of test statistics in several applications of multiple hypotheses testing. We explain these applications and provide formulas for computing multiplicity-adjusted p-values under the respective global hypothesis.
  • Item
    Optimal elliptic Sobolev regularity near three-dimensional, multi-material Neumann vertices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Haller-Dintelmann, Robert; Höppner, Wolfgang; Kaiser, Hans-Christoph; Rehberg, Joachim; Ziegler, Günter M.
    We study relative stability properties of different clusters of closely packed one- and two-dimensional localized peaks of the Swift-Hohenberg equation. We demonstrate the existence of a 'spatial Maxwell' point where clusters are almost equally stable, irrespective of the number of pes involved. Above (below) the Maxwell point, clusters become more (less) stable with the increase of the number of peaks
  • Item
    Optimal control of elastic vector-valued AllenCahn variational inequalities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Farshbaf-Shaker, Mohammad Hassan; Hecht, Claudia
    In this paper we consider a elastic vector-valued AllenCahn MPCC (Mathematical Programs with Complementarity Constraints) problem. We use a regularization approach to get the optimality system for the subproblems. By passing to the limit in the optimality conditions for the regularized subproblems, we derive certain generalized first-order necessary optimality conditions for the original problem.
  • Item
    Thermodynamics of multiphase problems in viscoelasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Paoli, Laetitia; Petrov, Adrien
    This paper deals with a three-dimensional mixture model describing materials undergoing phase transition with thermal expansion. The problem is formulated within the framework of generalized standard solids by the coupling of the momentum equilibrium equation and the flow rule with the heat transfer equation. A global solution for this thermodynamically consistent problem is obtained by using a fixed-point argument combined with global energy estimates.
  • Item
    Global existence result for phase transformations with heat transfer in shape memory alloys : dedicated to 75th birthday of K. Gröger
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Paoli, Laetitia; Petrov, Adrien; Gröger, K.
    We consider three-dimensional models for rate-independent processes describing materials undergoing phase transformations with heat transfer. The problem is formulated within the framework of generalized standard solids by the coupling of the momentum equilibrium equation and the flow rule with the heat transfer equation. Under appropriate regularity assumptions on the initial data, we prove the existence a global solution for this thermodynamically consistent system, by using a fixed-point argument combined with global energy estimates.