Search Results

Now showing 1 - 10 of 14
  • Item
    Deep Geothermal Energy for Lower Saxony (North Germany) – Combined Investigations of Geothermal Reservoir Characteristics
    (Amsterdam [u.a.] : Elsevier, 2014) Hahne, Barbara; Thomas, Rüdiger; Bruckman, Viktor J.; Hangx, Suzanne; Ask, Maria
    For the economic success of a geothermal project the hydraulic properties and temperature of the geothermal reservoir are crucial. New methodologies in seismics, geoelectrics and reservoir geology are tested within the frame of the collaborative research programme “Geothermal Energy and High-Performance Drilling” (gebo). Within nine geoscientific projects, tools were developed that help in the evaluation and interpretation of acquired data. Special emphasis is placed on the investigation of rock properties, on the development of early reservoir assessment even during drilling, and on the interaction between the drilling devices and the reservoir formation. The propagation of fractures and the transport of fluid and heat within the regional stress field are investigated using different approaches (field studies, seismic monitoring, multi-parameter modelling). Geologic structural models have been created for simulation of the local stress field and hydromechanical processes. Furthermore, a comprehensive dataset of hydrogeochemical environments was collected allowing characterisation and hydrogeochemical modelling of the reservoir.
  • Item
    Laser structuring of thin layers for flexible electronics by a shock wave-induced delamination process
    (Amsterdam [u.a.] : Elsevier, 2014) Lorenz, P.; Ehrhardt, M.; Zimmer, K.
    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
  • Item
    Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing
    (Amsterdam [u.a.] : Elsevier, 2014) Ehrhardt, M.; Lorenz, P.; Lotnyk, A.; Romanus, H.; Thelander, E.; Zimmer, K.
    Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation.
  • Item
    In-process evaluation of electrical properties of CIGS solar cells scribed with laser pulses of different pulse lengths
    (Amsterdam [u.a.] : Elsevier, 2014) Zimmer, K.; Wang, X.; Lorenz, P.; Bayer, L.; Ehrhardt, M.; Scheit, C.; Braun, A.
    The optimization of laser scribing for the interconnection of CIGS solar cells is a current focus of laser process development. In addition to the geometry of the laser scribes the impact of the laser patterning to the electrical properties of the solar cells has to be optimized with regards to the scribing process and the laser sources. In-process measurements provide an approach for reliable evaluation of the electrical characteristics. In particular, the parallel resistance Rp that was calculated from the measured I-V curves was measured in dependence on the scribing parameters of a short-pulsed ns laser in comparison to a standard ps laser at a wavelength of 1.06 μm. With low pulse overlap of ∼ 20% a reduction of Rp to 2/3 of the initial value has been achieved for ns laser pulses. In comparison to ps laser slightly more defects were observed at the investigated parameter range.
  • Item
    Pulsed-field Invasion to HTS Bulk Magnets Grown from Two Seeds with Varied Seed-crystal Positions and Numbers
    (Amsterdam [u.a.] : Elsevier, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The flux-invasion behavior into the melt-processed Y-Ba-Cu-O bulk magnets were precisely measured and analyzed during and after their pulsed-field magnetization processes operated at 30.6 K. The materials were fabricated as the bulk monoliths grown by adopting two seed-crystals, or shifting the seed-crystal positions from the centre of the sample surface, which exhibited the magnetically single-domain distributions. Although the performances of the trapped flux density after activations showed no obvious differences, the flux started invading into the sample bearing two seeds obviously at lower fields than those of normally-grown isotropic crystal. Since the flux penetration behavior were thus clearly different between the samples with the structure grown from two seeds and uniformly grown samples with a seed crystal, it is suggested that the structure results in an effective magnetizing method with less heating than those of conventional samples, which results in the higher performance of field trapping in the bulk magnets than usual.
  • Item
    Ab initio based study of finite-temperature structural, elastic and thermodynamic properties of FeTi
    (Amsterdam [u.a.] : Elsevier, 2014) Zhu, L.-F.; Friák, M.; Udyansky, A.; Ma, D.; Schlieter, A.; Kühn, U.; Eckert, J.; Neugebauer, J.
    We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.
  • Item
    Toward mixed-element meshing based on restricted Voronoi diagrams
    (Amsterdam [u.a.] : Elsevier, 2014) Pellerin, J.; Lévy, B.; Caumon, G.
    In this paper we propose a method to generate mixed-element meshes (tetrahedra, triangular prisms, square pyramids) for B-Rep models. The vertices, edges, facets, and cells of the final volumetric mesh are determined from the combinatorial analysis of the intersections between the model components and the Voronoi diagram of sites distributed to sample the model. Inside the volumetric regions, Delaunay tetrahedra dual of the Voronoi diagram are built. Where the intersections of the Voronoi cells with the model surfaces have a unique connected component, tetrahedra are modified to fit the input triangulated surfaces. Where these intersections are more complicated, a correspondence between the elements of the Voronoi diagram and the elements of the mixedelement mesh is used to build the final volumetric mesh. The method which was motivated by meshing challenges encountered in geological modeling is demonstrated on several 3D synthetic models of subsurface rock volumes.
  • Item
    Monitoring the chemistry of self-healing by vibrational spectroscopy - Current state and perspectives
    (Amsterdam [u.a.] : Elsevier, 2014) Zedler, L.; Hager, M.D.; Schubert, U.S.; Harrington, M.J.; Schmitt, M.; Popp, J.; Dietzek, B.
    Self-healing materials are designed to heal damage caused by, for example, mechanical stress or aging such that the original functionality of the material is at least partially restored. Thus, self-healing materials hold great promise for prolonging the lifetime of machines, particularly those in remote locations, as well as in increasing the reliability and safety associated with functional materials in, for example, aeronautics applications. Recent material science applications of self-healing have led to an increased interest in the field and, consequently, the spectroscopic characterization of a wide range of self-healing materials with respect to their mechanical properties such as stress and strain resistance and elasticity was in the focus. However, the characterization of the chemical mechanisms underlying various self-healing processes locally within the damaged region of materials still presents a major challenge. This requires experimental techniques that work non-destructively in situ and are capable of revealing the chemical composition of a sample with sufficient spatial and temporal resolution without disturbing the healing process. Along these lines, vibrational spectroscopy and, in particular Raman spectroscopy, holds great promise, largely due to the high spatial resolution in the order of several hundreds of nanometers that can be obtained. This article aims to summarize the state of the art and prospective of Raman spectroscopy to contribute significant insights to the research on self-healing materials - in particular focusing on polymer and biopolymer materials.
  • Item
    Hydrogel-based actuators: Possibilities and limitations
    (Amsterdam [u.a.] : Elsevier, 2014) Ionov, L.
    The rapid development of microtechnology in recent times has increased the necessity for the development of devices, which are able to perform mechanical work on the micro- and macroscale. Among all kinds of actuators, the ones based on stimuli-responsive hydrogels, which are three-dimensional polymer networks strongly imbibed with water, deserve particular attention. This paper aims to provide a brief overview of stimuli-responsive hydrogel actuators with respect to their sensitivity to different stimuli, different kinds of deformation, the possibilities of generating different types of movement, as well as their applications.
  • Item
    In-situ and ex-situ measurements of thermal conductivity of supercapacitors
    (Amsterdam [u.a.] : Elsevier, 2014) Hauge, H.H.; Presser, V.; Burheim, O.
    Thermal signature of supercapacitors are investigated in-situ and ex-situ using commercial supercapacitors. Regarding the in-situ method, four supercapacitors were connected in series, with thermocouples embedded between the supercapacitors. As the applied current was increased, the temperature measured at the intrinsic positions also increased. When cycling at a current density of 0.11Acm-2 the centre temperature increased by 14K compared to the stack surface temperature. This is an important figure as literature states that an increase of 10K leads to a corresponding decrease in the lifetime by a factor of 2. Using the obtained temperature profiles, the effective thermal conductivity of the stack was found to vary between 0.5WK-1m-1 and 1.0WK-1m-1, depending on the compaction of the stack. For the ex-situ measurements, the thermal conductivity and the thicknesses of the supercapacitor material layers were measured individually in order to determine the corresponding thermal conductivity of the stack. When using this method an effective thermal conductivity of the stack of 0.53 ± 0.06WK-1m-1 was obtained. The analysis also demonstrated that the main contributor to the thermal resistivity and conductivity of the supercapacitor construction is the electrodes. This demonstrates that when managing heat from supercapacitors it is important to focus on the thermal conductivity of the components materials.