Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Local difference measures between complex networks for dynamical system model evaluation

2015, Lange, S., Donges, J.F., Volkholz, J., Kurths, J.

Loading...
Thumbnail Image
Item

General scaling of maximum degree of synchronization in noisy complex networks

2014, Traxl, D., Boers, N., Kurths, J.

The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.

Loading...
Thumbnail Image
Item

Individual nodes contribution to the mesoscale of complex networks

2014, Klimm, F., Borge-Holthoefer, J., Wessel, N., Kurths, J., Zamora-Lopez, G.

The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.

Loading...
Thumbnail Image
Item

Review: Visual analytics of climate networks

2015, Nocke, T., Buschmann, S., Donges, J.F., Marwan, N., Schulz, H.-J., Tominski, C.

Loading...
Thumbnail Image
Item

Change in the embedding dimension as an indicator of an approaching transition

2014, Neuman, Y., Marwan, N., Cohen, Y.

Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point.

Loading...
Thumbnail Image
Item

Detours around basin stability in power networks

2014, Schultz, P., Heitzig, J., Kurths, J.

To analyse the relationship between stability against large perturbations and topological properties of a power transmission grid, we employ a statistical analysis of a large ensemble of synthetic power grids, looking for significant statistical relationships between the single-node basin stability measure and classical as well as tailormade weighted network characteristics. This method enables us to predict poor values of single-node basin stability for a large extent of the nodes, offering a node-wise stability estimation at low computational cost. Further, we analyse the particular function of certain network motifs to promote or degrade the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design.

Loading...
Thumbnail Image
Item

Estimation of sedimentary proxy records together with associated uncertainty

2015, Goswami, B., Heitzig, J., Rehfeld, K., Marwan, N., Anoop, A., Prasad, S., Kurths, J.

Loading...
Thumbnail Image
Item

Restoration of rhythmicity in diffusively coupled dynamical networks

2015, Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J.

Loading...
Thumbnail Image
Item

Complex network approach to characterize the statistical features of the sunspot series

2014, Zou, Y., Small, M., Liu, Z., Kurths, J.

Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse- transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15-1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models.

Loading...
Thumbnail Image
Item

Finding recurrence networks' threshold adaptively for a specific time series

2014, Eroglu, D., Marwan, N., Prasad, S., Kurths, J.

Recurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches-recurrence plots and recurrence networks-, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period-chaos and even period-period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record.