Search Results

Now showing 1 - 10 of 38
Loading...
Thumbnail Image
Item

Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany

2015, Ganz, Britta, Ask, Maria, Hangx, Suzanne, Bruckman, Viktor, Kühn, Michael

The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.

Loading...
Thumbnail Image
Item

Carrier Lifetime in Liquid-phase Crystallized Silicon on Glass

2016, Vetter, Michael, Gawlik, Annett, Plentz, Jonathan, Andrä, Gudrun, Ribeyron, Pierre-Jean, Cuevas, Andres, Weeber, Arthur, Ballif, Christophe, Glunz, Stefan, Poortmans, Jef, Brendel, Rolf, Aberle, Armin, Sinton, Ron, Verlinden, Pierre, Hahn, Giso

Liquid-phase crystallized silicon on glass (LPCSG) presents a promising material to fabricate high quality silicon thin films, e.g. for solar cells and modules. Barrier layers and a doped amorphous silicon layer are deposited on the glass substrate followed by crystallization with a line focus laser beam. In this paper we introduce injection level dependent lifetime measurements generated by the quasi steady-state photoconductance decay method (QSSPC) to characterize LPCSG absorbers. This contactless method allows a determination of the LPCSG absorber quality already at an early stage of solar cell fabrication, and provides a monitoring of the absorber quality during the solar cell fabrication steps. We found minority carrier lifetimes higher than 200ns in our layers (e.g. n-type absorber with ND=2x1015cm-3) indicating a surface recombination velocity SBL<3000cm/s at the barrier layer/Si interface.

Loading...
Thumbnail Image
Item

Laser structuring of thin layers for flexible electronics by a shock wave-induced delamination process

2014, Lorenz, P., Ehrhardt, M., Zimmer, K.

The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

Loading...
Thumbnail Image
Item

Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing

2014, Ehrhardt, M., Lorenz, P., Lotnyk, A., Romanus, H., Thelander, E., Zimmer, K.

Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation.

Loading...
Thumbnail Image
Item

Deep Geothermal Energy for Lower Saxony (North Germany) – Combined Investigations of Geothermal Reservoir Characteristics

2014, Hahne, Barbara, Thomas, Rüdiger, Bruckman, Viktor J., Hangx, Suzanne, Ask, Maria

For the economic success of a geothermal project the hydraulic properties and temperature of the geothermal reservoir are crucial. New methodologies in seismics, geoelectrics and reservoir geology are tested within the frame of the collaborative research programme “Geothermal Energy and High-Performance Drilling” (gebo). Within nine geoscientific projects, tools were developed that help in the evaluation and interpretation of acquired data. Special emphasis is placed on the investigation of rock properties, on the development of early reservoir assessment even during drilling, and on the interaction between the drilling devices and the reservoir formation. The propagation of fractures and the transport of fluid and heat within the regional stress field are investigated using different approaches (field studies, seismic monitoring, multi-parameter modelling). Geologic structural models have been created for simulation of the local stress field and hydromechanical processes. Furthermore, a comprehensive dataset of hydrogeochemical environments was collected allowing characterisation and hydrogeochemical modelling of the reservoir.

Loading...
Thumbnail Image
Item

Laser-Induced front Side Etching: An Easy and Fast Method for Sub-μm Structuring of Dielectrics

2012, Lorenz, P., Ehrhardt, M., Zimmer, K.

Laser-induced front side etching (LIFE) is a method for the nanometer-precision structuring of dielectrics, e.g. fused silica, using thin metallic as well as organic absorber layer attached to the laser-irradiated front side of the sample. As laser source an excimer laser with a wavelength of 248 nm and an pulse duration of 25 ns was used. For sub-μm patterning a phase mask illuminated by the top hat laser beam was projected by a Schwarzschild objective. The LIFE process allows the fabrication of well-defined and smooth surface structures with sub-μm lateral etching regions (Δx < 350 nm) and vertical etching depths from 1 nm to sub-mm.

Loading...
Thumbnail Image
Item

Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

2015, Betz, B., Rauscher, P., Siebert, R., Schaefer, R., Kaestner, A., Van Swygenhoven, H., Lehmann, E., Grünzweig, C.

The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

Loading...
Thumbnail Image
Item

Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany)

2013, Cacace, Mauro, Scheck-Wenderoth, Magdalena, Noack, Vera, Cherubini, Yvonne, Schellschmidt, Rüdiger, Kühn, Michael, Juhlin, Christopher, Held, Hermann, Bruckman, Viktor, Tambach, Tim, Kempka, Thomas

A lithosphere scale geological model has been used to determine the surface heat flow component due to conductive heat transport for the area of Brandenburg. The modelling results have been constrained by a direct comparison with available heat flow measurements. The calculated heat flow captures the regional trend in the surface heat flow distribution which can be related to existing thermal conductivity variations between the different sedimentary units. An additional advective component due to topography induced regional flow and focused flow within major fault zones should be considered to explain the spatial variation observed in the surface heat flow.

Loading...
Thumbnail Image
Item

Measurements of Streams Agitated by Fluid Loaded SAW-devices Using a Volumetric 3-component Measurement Technique (V3V)

2015, Kiebert, Florian, König, Jörg, Kykal, Carsten, Schmidt, Hagen

Utilizing surface acoustic waves (SAW) to induce tailored fluid motion via the acoustic streaming requires detailed knowledge about the acoustic bulk wave excitation. For the first time, the Defocus Digital Particle Image Velocimetry is used to measure the fluid motion originating from a fluid loaded SAW-device. With this flow measurement technique, the acoustic streaming-induced fluid motion can be observed volumetrically, which is attractive not only for application, but also for simulation in order to gain deeper insights regarding three-dimensional acoustic effects.

Loading...
Thumbnail Image
Item

Josephson and tunneling junctions with thin films of iron based superconductors

2012, Schmidt, S., Döring, S., Tympel, V., Schmidl, F., Haindl, S., Iida, K., Holzapfel, B., Seidel, P.

We produced planar hybrid Superconductor - Normal metal - Superconductor (SNS') junctions and interfaceengineered edge junctions (SN'S' or SIS' with normal metal (N') or insulating (I) barrier) with various areas using Co-doped Ba-122 as base electrode. Varying the thickness of the Normal metal (gold) barrier of the planar junctions, we can either observe Josephson behavior at thinner gold thicknesses or transport dominated by Andreev reflection. The edge junctions seem to form a SN'S'-contact.