Search Results

Now showing 1 - 10 of 21
Loading...
Thumbnail Image
Item

A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions

2015, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.

Loading...
Thumbnail Image
Item

A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-Stokes system

2016, Hintermüller, Michael, Hinze, Michael, Kahle, Christian, Tobias, Keil

This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn-Hilliard-Navier-Stokes system with variable densities. The free energy density associated to the Cahn-Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier-Stokes equation. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented which is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Details on the numerical realization of the adaptive concept and a report on numerical tests are given.

Loading...
Thumbnail Image
Item

Mathematical modeling of Czochralski type growth processes for semiconductor bulk single crystals

2012, Dreyer, Wolfgang, Druet, Pierre-Étienne, Klein, Olaf, Sprekels, Jürgen

This paper deals with the mathematical modeling and simulation of crystal growth processes by the so-called Czochralski method and related methods, which are important industrial processes to grow large bulk single crystals of semiconductor materials such as, e.,g., gallium arsenide (GaAs) or silicon (Si) from the melt. In particular, we investigate a recently developed technology in which traveling magnetic fields are applied in order to control the behavior of the turbulent melt flow. Since numerous different physical effects like electromagnetic fields, turbulent melt flows, high temperatures, heat transfer via radiation, etc., play an important role in the process, the corresponding mathematical model leads to an extremely difficult system of initial-boundary value problems for nonlinearly coupled partial differential equations ...

Loading...
Thumbnail Image
Item

Optimal control of geometric partial differential equations

2019, Hintermüller, Michael, Keil, Tobias

Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.

Loading...
Thumbnail Image
Item

Approximation and optimal control of dissipative solutions to the Ericksen-Leslie system

2018, Lasarzik, Robert

We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. Recently, the author introduced the concept of dissipative solutions. These solutions show several advantages in comparison to the earlier introduced measure-valued solutions. In this article, we argue that dissipative solutions can be numerically approximated by a relative simple scheme, which fulfills the norm-restriction on the director in every step. We introduce a semi-discrete scheme and derive an approximated version of the relative-energy inequality for solutions of this scheme. Passing to the limit in the semi-discretization, we attain dissipative solutions. Additionally, we introduce an optimal control scheme, show the existence of an optimal control and a possible approximation strategy. We prove that the cost functional is lower semi-continuous with respect to the convergence of this approximation and argue that an optimal control is attained in the case that there exists a solution admitting additional regularity.

Loading...
Thumbnail Image
Item

A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions

2015, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the pure Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.

Loading...
Thumbnail Image
Item

A distributed control problem for a fractional tumor growth model

2019, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three selfadjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn--Hilliard type phase field system modeling tumor growth that goes back to Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24.) The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in the recent work Adv. Math. Sci. Appl. 28 (2019), 343--375 by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type.

Loading...
Thumbnail Image
Item

Asymptotic limits and optimal control for the Cahn-Hilliard system with convection and dynamic boundary conditions

2018, Gilardi, Gianni, Sprekels, Jürgen

In this paper, we study initial-boundary value problems for the CahnHilliard system with convection and nonconvex potential, where dynamic boundary conditions are assumed for both the associated order parameter and the corresponding chemical potential. While recent works addressed the case of viscous CahnHilliard systems, the pure nonviscous case is investigated here. In its first part, the paper deals with the asymptotic behavior of the solutions as time approaches infinity. It is shown that the w-limit of any trajectory can be characterized in terms of stationary solutions, provided the initial data are sufficiently smooth. The second part of the paper deals with the optimal control of the system by the fluid velocity. Results concerning existence and first-order necessary optimality conditions are proved. Here, we have to restrict ourselves to the case of everywhere defined smooth potentials. In both parts of the paper, we start from corresponding known results for the viscous case, derive sufficiently strong estimates that are uniform with respect to the (positive) viscosity parameter, and then let the viscosity tend to zero to establish the sought results for the nonviscous case.

Loading...
Thumbnail Image
Item

A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions

2014, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the viscous Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first order necessary conditions for optimality are proved.

Loading...
Thumbnail Image
Item

Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials

2018, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In the recent paper Well-posedness and regularity for a generalized fractional CahnHilliard system, the same authors derived general well-posedness and regularity results for a rather general system of evolutionary operator equations having the structure of a CahnHilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the CahnHilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper Optimal distributed control of a generalized fractional CahnHilliard system (Appl. Math. Optim. (2018), https://doi.org/10.1007/s00245-018-9540-7) by the same authors, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived, where more restrictive conditions on the operators A and B had to be assumed in order to be able to show differentiability properties for the associated control-to-state operator. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called deep quench method. This technique, in which the nondifferentiable double obstacle nonlinearity is approximated by differentiable logarithmic nonlinearities, was first developed by P. Colli, M.H. Farshbaf-Shaker and J. Sprekels in the paper A deep quench approach to the optimal control of an AllenCahn equation with dynamic boundary conditions and double obstacles (Appl. Math. Optim. 71 (2015), pp. 1-24) and has proved to be a powerful tool in a number of optimal control problems with double obstacle potentials in the framework of systems of CahnHilliard type. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.