Search Results

Now showing 1 - 2 of 2
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Static Dielectric Constant of β-Ga2O3 Perpendicular to the Principal Planes (100), (010), and (001)
    (Pennington, NJ : ECS, 2019) Fiedler, A.; Schewski, R.; Galazka, Z.; Irmscher, K.
    The relative static dielectric constant ℇr of β-Ga2O3 perpendicular to the planes (100), (010), and (001) is determined in the temperature range from 25 K to 500 K by measuring the AC capacitance of correspondingly oriented plate capacitor structures using test frequencies of up to 1 MHz. This allows a direct quantification of the static dielectric constant and a unique direction assignment of the obtained values. At room temperature, ℇr perpendicular to the planes (100), (010), and (001) amounts to 10.2 ± 0.2, 10.87 ± 0.08, and 12.4 ± 0.4, respectively, which clearly evidence the anisotropy expected for β-Ga2O3 due to its monoclinic crystal structure. An increase of ℇr by about 0.5 with increasing temperature from 25 K to 450 K was found for all orientations. Our ℇr data resolve the inconsistencies in the previously available literature data with regard to absolute values and their directional assignment and therefore provide a reliable basis for the simulation and design of devices. © The Author(s) 2019.