Search Results

Now showing 1 - 3 of 3
  • Item
    The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses
    (Bristol : IOP Publishing, 2019) Wei, Qi; Gostin, Petre Flaviu; Addison, Owen; Reed, Daniel; Calin, Mariana; Bera, Supriya; Ramasamy, Parthiban; Davenport, Alison
    TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.
  • Item
    The Effect of Boron Content on Wetting Kinetics in Si-B Alloy/h-BN System
    (New York, NY : Springer, 2019) Polkowski, Wojciech; Sobczak, Natalia; Bruzda, Grzegorz; Nowak, Rafał; Giuranno, Donatella; Kudyba, Artur; Polkowska, Adelajda; Pajor, Krzysztof; Kozieł, Tomasz; Kaban, Ivan
    In this work, the effect of boron content on the high-temperature wetting behavior in the Si-B alloy/h-BN systems was experimentally examined. For this reason, hypoeutectic, eutectic and hypereutectic Si-B alloys (Si-1B, Si-3.2B and Si-5.7B wt.%, respectively) were produced by electric arc melting method and then subjected to sessile drop/contact heating experiments with polycrystalline h-BN substrates, at temperatures up to 1750 °C. Similar to pure Si/h-BN system, wetting kinetics curves calculated on a basis of in situ recorded drop/substrate images point toward non-wetting behavior of all selected Si-B alloy/h-BN couples. The highest contact angle values of ~ 150° were obtained for hypoeutectic and eutectic Si-B alloys in the whole examined temperature range. © 2018, The Author(s).
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 °C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 °C (Tm = 1312 °C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).