Search Results

Now showing 1 - 10 of 11
  • Item
    Geophysical investigation of a freshwater lens on the island of Langeoog, Germany – Insights from combined HEM, TEM and MRS data
    (Amsterdam [u.a.] : Elsevier Science, 2017) Costabel, Stephan; Siemon, Bernhard; Houben, Georg; GĂ¼nther, Thomas
    A multi-method geophysical survey, including helicopter-borne electromagnetics (HEM), transient electromagnetics (TEM), and magnetic resonance sounding (MRS), was conducted to investigate a freshwater lens on the North Sea island of Langeoog, Germany. The HEM survey covers the entire island and gives an overview of the extent of three freshwater lenses that reach depths of up to 45 m. Ground-based TEM and MRS were conducted particularly on the managed western lens to verify the HEM results and to complement the lithological information from existing boreholes. The results of HEM and TEM are in good agreement. Salt- and freshwater-bearing sediments can, as expected, clearly be distinguished due to their individual resistivity ranges. In the resistivity data, a large transition zone between fresh- and saltwater with a thickness of up to 20 m is identified, the existence of which is verified by borehole logging and sampling. Regarding lithological characterisation of the subsurface, the MRS method provides more accurate and reliable results than HEM and TEM. Using a lithological index derived from MRS water content and relaxation time, thin aquitard structures as well as fine and coarse sand aquifers can be distinguished. Complementing the existing borehole data with the lithology information estimated from MRS, we generate a map showing the occurrence of aquitard structures, which significantly improves the hydrogeological model of the island. Moreover, we demonstrate that the estimates of groundwater conductivity in the sand aquifers from geophysical data are in agreement with the fluid conductivity measured in the boreholes.
  • Item
    The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses
    (Bristol : IOP Publishing, 2019) Wei, Qi; Gostin, Petre Flaviu; Addison, Owen; Reed, Daniel; Calin, Mariana; Bera, Supriya; Ramasamy, Parthiban; Davenport, Alison
    TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.
  • Item
    The Effect of Boron Content on Wetting Kinetics in Si-B Alloy/h-BN System
    (New York, NY : Springer, 2019) Polkowski, Wojciech; Sobczak, Natalia; Bruzda, Grzegorz; Nowak, Rafał; Giuranno, Donatella; Kudyba, Artur; Polkowska, Adelajda; Pajor, Krzysztof; Kozieł, Tomasz; Kaban, Ivan
    In this work, the effect of boron content on the high-temperature wetting behavior in the Si-B alloy/h-BN systems was experimentally examined. For this reason, hypoeutectic, eutectic and hypereutectic Si-B alloys (Si-1B, Si-3.2B and Si-5.7B wt.%, respectively) were produced by electric arc melting method and then subjected to sessile drop/contact heating experiments with polycrystalline h-BN substrates, at temperatures up to 1750 Â°C. Similar to pure Si/h-BN system, wetting kinetics curves calculated on a basis of in situ recorded drop/substrate images point toward non-wetting behavior of all selected Si-B alloy/h-BN couples. The highest contact angle values of ~ 150° were obtained for hypoeutectic and eutectic Si-B alloys in the whole examined temperature range. © 2018, The Author(s).
  • Item
    Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet
    (Pennington, NJ : Electrochemical Society, 2018) Swamy, Tushar; Park, Richard; Sheldon, Brian W.; Rettenwander, Daniel; Porz, Lukas; Berendts, Stefan; Uecker, Reinhard; Carter, W. Craig; Chiang, Yet-Ming
    Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today’s lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.
  • Item
    Metal Plastic Hybrids: Optimisation in model experiments [Metall-Kunststoff-Verbunde: Modellversuche zur Optimierung]
    (Weinheim : Wiley-VCH, 2019) Bräuer, M.; Edelmann, M.; Lehmann, D.; Tuschla, M.
    Metal plastic hybrids will become more important as components for lightweight constructions. It is reported about optimisation of making three layer hybrids consisted of a steel plate, an adhesion layer based of uretdione powder coating material and a flexible component polyurethane in model experiments. Hybrid formation is performed in a compression moulding process. The adhesion layer and the polyurethane are modified to increase the hybrid bond strength. Peel test are conducted to quantitatively characterize the bond strength and an apparent energy release rate is calculated based on the peel force. For hybrids with widths of 2 mm polyurethane stripes it is possible to increase the apparent energy release rate for about 30 % to 16 N/mm in comparison with a hybrid with unmodified components. These hybrids have the same high bond strength level as the strongest hybrids reported in literature. Concluding the optimisation results are discussed related to their relevancy for the interpretation of the adhesion mechanisms in the interface between adhesion layer and polyurethane. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Vibrations of a laboratory-scale gas-stirred ladle with two eccentric nozzles and multiple sensors
    ([Singapore] : Springer Singapore, 2019) Alia, Najib; Pylvänäinen, Mika; Visuri, Ville-Valtteri; John, Volker; Ollila, Seppo
    During ladle stirring, a gas is injected into the steel bath to generate a mixing of the liquid steel. The optimal process control requires a reliable measurement of the stirring intensity, for which the induced ladle wall vibrations have proved to be a potential indicator. An experimental cold water ladle with two eccentric nozzles and eight mono-axial accelerometers was thus investigated to measure the vibrations. The effect of the sensors’ positions with respect to the gas plugs on the vibration intensity was analyzed, and experimental data on several points of the ladle were collected for future numerical simulations. It is shown that the vibration root-mean-square values depend not only on process parameters, such as gas flow rate, water, and oil heights, but also on the radial and axial positions of the sensors. The vibration intensity is clearly higher, close to the gas plumes, than in the opposite side. If one of the nozzles is clogged, the vibration intensity close to the clogged nozzle drops drastically (−36 to −59%), while the vibrations close to the normal operating nozzle are hardly affected. Based on these results, guidelines are provided for an optimized vibration-based stirring.
  • Item
    High-Temperature Interaction of Liquid Gd with Y2O3
    (New York, NY : Springer, 2019) Turalska, P.; Sobczak, N.; Bruzda, G.; Kaban, I.; Mattern, N.
    The sessile drop method combined with contact heating procedure was applied for the investigation of high-temperature interaction between liquid Gd and Y2O3 substrate. Real-time behavior of Gd sample in flowing inert gas (Ar) atmosphere upon heating to and at temperature of 1362 Â°C was recorded using high-speed high-resolution CCD camera. The results evidenced that molten Gd wets Y2O3 substrate (the contact angle θ < 90°) immediately after melting of metal sample observed at T = 1324 Â°C (Tm = 1312 Â°C). During the first 3 min of the sessile drop test, the contact angle dropped from θ = 52° to θ = 24° and then stabilized at the final value of θf * = 33°. The solidified Gd/Y2O3 couple was subjected to structural characterization using optical microscopy, scanning electron microscopy coupled with x-ray energy-dispersive spectroscopy. The results evidenced that the wettability in the Gd/Y2O3 system has a reactive nature and the leading mechanism of the interaction between liquid Gd and Y2O3 is the dissolution of the ceramic in the liquid metal responsible for the formation of a deep crater in the substrate under the drop. Therefore, the final contact angle θf*, estimated from the side-view drop image, should be considered as an apparent value, compared to the more reliable value of θf = 70° measured on the cross section of the solidified couple. © 2019, The Author(s).
  • Item
    On the Impact of Strained PECVD Nitride Layers on Oxide Precipitate Nucleation in Silicon
    (Pennington, NJ : ECS, 2019) Kissinger, G.; Kot, D.; Costina, I.; Lisker, M.
    PECVD nitride layers with different layer stress ranging from about 315 MPa to −1735 MPa were deposited on silicon wafers with similar concentration of interstitial oxygen. After a thermal treatment consisting of nucleation at 650°C for 4 h or 8 h followed annealing 780°C 3 h + 1000°C 16 h in nitrogen, the profiles of the oxide precipitate density were investigated. The binding states of hydrogen in the layers was investigated by FTIR. There is a clear effect of the layer stress on oxide precipitate nucleation. The higher the compressive layer stress is the higher is a BMD peak below the front surface. If the nitride layer is removed after the nucleation anneal the BMD peak below the front surface becomes lower. It is possible to model the BMD peak below the surface by vacancy in-diffusion from the silicon/nitride interface. With increasing duration of the nucleation anneal the vacancy injection from the silicon/nitride interface decreases and with increasing compressive layer stress it increases. © The Author(s) 2019.
  • Item
    On the Impact of Strained PECVD Oxide Layers on Oxide Precipitation in Silicon
    (Pennington, NJ : ECS, 2019) Kissinger, G.; Kot, D.; Lisker, M.; Sattler, A.
    PECVD oxide layers with different layer stress ranging from about −305.2 MPa to 39.9 MPa were deposited on silicon wafers with similar concentration of interstitial oxygen. After a thermal treatment consisting of rapid thermal annealing (RTA) and furnace annealing 780°C 3 h + 1000°C 16 h in nitrogen the profiles of the oxide precipitate density were investigated. Supersaturations of self-interstitials as function of layer stress were determined by adjusting modelling results to measured depth profiles of bulk microdefects. The self-interstitial supersaturation generated by RTA at 1250°C and 1175°C at the silicon/oxide interface is increasing linearly with increasing layer stress. Values for self-interstitial supersaturation determined on deposited oxide layers after RTA at 1250°C and 1175°C are very similar to values published for RTO by Sudo et al. An RTA at 1175°C with a PECVD oxide on top of the wafer is a method to effectively suppress oxygen precipitation in silicon wafers. Nucleation anneals carried out at 650°C for 4 h and 8 h did not show any effect of PECVD oxide layers on oxide precipitate nucleation. © The Author(s) 2019.