Search Results

Now showing 1 - 10 of 16
  • Item
    Optimal control of doubly nonlinear evolution equations governed by subdifferentials without uniqueness of solutions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Farshbaf-Shaker, M. Hassan; Yamazaki, Noriaki
    In this paper we study an optimal control problem for a doubly nonlinear evolution equation governed by time-dependent subdifferentials. We prove the existence of solutions to our equation. Also, we consider an optimal control problem without uniqueness of solutions to the state system. Then, we prove the existence of an optimal control which minimizes the nonlinear cost functional. Moreover, we apply our general result to some model problem.
  • Item
    Optimal control of multiphase steel production
    (Berlin ; Heidelberg : Springer, 2019) Hömberg, Dietmar; Krumbiegel, Klaus; Togobytska, Nataliya
    An optimal control problem for the production of multiphase steel is investigated that takes into account phase transformations in the steel slab. The state equations are a semilinear heat equation coupled with an ordinary differential equation, that describes the evolution of the steel microstructure. The time-dependent heat transfer coefficient serves as a control function. Necessary and sufficient optimality conditions for the control problem are derived. For the numerical solution of the control problem, a reduced sequential quadratic programming method with a primal-dual active set strategy is developed. The numerical results are presented for the optimal control of a cooling line in the production of hot-rolled Mo–Mn dual phase steel. © 2019, The Author(s).
  • Item
    Regularization for optimal control problems associated to nonlinear evolution equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Meinlschmidt, Hannes; Meyer, Christian; Rehberg, Joachim
    It is well-known that in the case of a sufficiently nonlinear general optimal control problem there is very frequently the necessity for a compactness argument in order to pass to the limit in the state equation in the standard ``calculus of variations'' proof for the existence of optimal controls. For time-dependent state equations, i.e., evolution equations, this is in particular unfortunate due to the difficult structure of compact sets in Bochner-type spaces. In this paper, we propose an abstract function space and a suitable regularization- or Tychonov term for the objective functional which allows for the usual standard reasoning in the proof of existence of optimal controls and which admits a reasonably favorable structure in the characterization of optimal solutions via first order necessary conditions in, generally, the form of a variational inequality of obstacle-type in time. We establish the necessary properties of the function space and the Tychonov term and derive the aforementioned variational inequality. The variational inequality can then be reformulated as a projection identity for the optimal control under additional assumptions. We give sufficient conditions on when these are satisfied. The considerations are complemented with a series of practical examples of possible constellations and choices in dependence on the varying control spaces required for the evolution equations at hand.
  • Item
    Optimal boundary control of a nonstandard Cahn-Hilliard system with dynamic boundary condition and double obstacle inclusions : dedicated to our friend Prof. Dr. Gianni Gilardi on the occasion of his 70th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Colli, Pierluigi; Sprekels, Jürgen
    In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105–118. The model consists of a strongly coupled system of nonlinear parabolic differential inclusions, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically; the system is complemented by initial and boundary conditions. For the order parameter of the phase separation process, a dynamic boundary condition involving the Laplace–Beltrami operator is assumed, which models an additional nonconserving phase transition occurring on the surface of the domain. We complement in this paper results that were established in the recent contribution appeared in Evol. Equ. Control Theory 6 (2017), pp. 35–58, by the two authors and Gianni Gilardi. In contrast to that paper, in which differentiable potentials of logarithmic type were considered, we investigate here the (more difficult) case of nondifferentiable potentials of double obstacle type. For such nonlinearities, the standard techniques of optimal control theory to establish the existence of Lagrange multipliers for the state constraints are known to fail. To overcome these difficulties, we employ the following line of approach: we use the results contained in the preprint arXiv:1609.07046 [math.AP] (2016), pp. 1–30, for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (nondifferentiable) double obstacle potentials.
  • Item
    A distributed control problem for a fractional tumor growth model
    (Basel : MDPI, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn-Hilliard type phase field system modeling tumor growth that has been proposed by Hawkins-Daarud, van der Zee and Oden. The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in a recent work by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type. © 2019 by the authors.
  • Item
    Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Krumbiegel, Klaus; Neitzel, Ira; Rösch, Arnd
    We develop sufficient optimality conditions for a Moreau-Yosida regularized optimal control problem governed by a semilinear elliptic PDE with pointwise constraints on the state and the control. We make use of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept, for which standard second order sufficient conditions have been shown. Moreover, we compare both regularization approaches within a numerical example
  • Item
    Path planning and collision avoidance for robots : dedicated to Prof. Dr. Helmut Maurer on the occasion of his 65th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Gerdts, Matthias; Henrion, René; Hömberg, Dietmar; Landry, Chantal; Maurer, Helmut
    An optimal control problem to find the fastest collision-free trajectory of a robot surrounded by obstacles is presented. The collision avoidance is based on linear programming arguments and expressed as state constraints. The optimal control problem is solved with a sequential programming method. In order to decrease the number of unknowns and constraints a backface culling active set strategy is added to the resolution technique.
  • Item
    Optimal control of the sweeping process over polyhedral controlled sets
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colombo, Giovanni; Henrion, René; Hoang, Nguyen D.; Mordukhovich, Boris S.
    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1;2-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples.
  • Item
    On the consistency of Runge-Kutta methods up to order three applied to the optimal control of scalar conservation laws
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hintermüller, Michael; Strogies, Nikolai
    Higher-order Runge-Kutta (RK) time discretization methods for the optimal control of scalar conservation laws are analyzed and numerically tested. The hyperbolic nature of the state system introduces specific requirements on discretization schemes such that the discrete adjoint states associated with the control problem converge as well. Moreover, conditions on the RK-coefficients are derived that coincide with those characterizing strong stability preserving Runge-Kutta methods. As a consequence, the optimal order for the adjoint state is limited, e.g., to two even in the case where the conservation law is discretized by a third-order method. Finally, numerical tests for controlling Burgers equation validate the theoretical results.
  • Item
    Extensions of the control variational method : dedicated to Prof. Dr. Fredi Tröltzsch on the occasion of his 60th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Sprekels, Jürgen; Tiba, Dan; Tröltzsch, Fredi
    The control variational method is a development of the variational approach, based on optimal control theory. In this work, we give an application to a variational inequality arising in mechanics and involving unilateral conditions both in the domain and on the boundary, and we explore the extension of the method to time-dependent problems