Search Results

Now showing 1 - 4 of 4
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.
  • Item
    Intentional polarity conversion of AlN epitaxial layers by oxygen
    ([London] : Macmillan Publishers Limited, 2018) Stolyarchuk, N.; Markurt, T.; Courville, A.; March, K.; Zúñiga-Pérez, J.; Vennéguès, P.; Albrecht, M.
    Nitride materials (AlN, GaN, InN and their alloys) are commonly used in optoelectronics, high-power and high-frequency electronics. Polarity is the essential characteristic of these materials: when grown along c-direction, the films may exhibit either N- or metal-polar surface, which strongly influences their physical properties. The possibility to manipulate the polarity during growth allows to establish unique polarity in nitride thin films and nanowires for existing applications but also opens up new opportunities for device applications, e.g., in non-linear optics. In this work, we show that the polarity of an AlN film can intentionally be inverted by applying an oxygen plasma. We anneal an initially mixed-polar AlN film, grown on sapphire substrate by metal-organic vapor phase epitaxy (MOVPE), with an oxygen plasma in a molecular beam epitaxy (MBE) chamber; then, back in MOVPE, we deposit a 200 nm thick AlN film on top of the oxygen-treated surface. Analysis by high-resolution probe-corrected scanning transmission electron microscopy (STEM) imaging and electron energy-loss spectroscopy (EELS) evidences a switch of the N-polar domains to metal polarity. The polarity inversion is mediated through the formation of a thin AlxOyNz layer on the surface of the initial mixed polar film, induced by the oxygen annealing.
  • Item
    Erratum: Author Correction: Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers (Scientific reports (2017) 7 1 (11761))
    ([London] : Macmillan Publishers Limited, 2018) Zeisberger, Matthias; Schmidt, Markus A.
    This Article contains errors within Figure 7, in which certain curves are distorted. The correct Figure 7 appears below as Figure 1: (Figure Presented).
  • Item
    Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy
    ([London] : Macmillan Publishers Limited, 2017) Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang
    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) Inx Ga1-x N layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ∼220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices.