Search Results

Now showing 1 - 10 of 19
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications
    (Basel : MDPI AG, 2014) Jahangiri, E.; Reichelt, S.; Thomas, I.; Hausmann, K.; Schlosser, D.; Schulze, A.
    The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 μm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste-water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel-than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.
  • Item
    Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS
    (Bristol : Institute of Physics Publishing, 2014) McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; Feifel, R.; Gaffney, K.J.; Glownia, J.M.; Martinez, T.J.; Miyabe, S.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V.S.; Schorb, S.; Schultz, T.; Spector, L.S.; Swiggers, M.; Tarantelli, F.; Tenney, I.; Wang, S.; White, J.L.; White, W.; Gühr, M.
    Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.
  • Item
    Optimization of quantum trajectories driven by strong-field waveforms
    (College Park : American Institute of Physics Inc., 2014) Haessler, S.; Balciunas, T.; Fan, G.; Andriukaitis, G.; Pugžlys, A.; Baltuška, A.; Witting, T.; Squibb, R.; Zaïr, A.; Tisch, J.W.G.; Marangos; Chipperfield, L.E.
    Quasifree field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecondduration extreme ultaviolet emission in the process of high-harmonic generation. The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer and the efficient return of the launched electron trajectories. It has been predicted that these limits can be significantly exceeded by an appropriately ramped-up cycle shape [L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)]. Here, we present an experimental realization of similar cycle-shaped waveforms and demonstrate control of the high-harmonic generation process on the single-atom quantum level via attosecond steering of the electron trajectories.With our improved optical cycles, we boost the field ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, 2 orders of magnitude enhancement of the generated extreme ultraviolet flux together with an increased spectral extension. This application, which is only one example of what can be achieved with cycle-shaped high-field light waves, has significant implications for attosecond spectroscopy and molecular self-probing.
  • Item
    Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors
    (Cambridge : Royal Society of Chemistry, 2015) Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A.D.; Lupina, G.; Lemme, M.C.; Östling, M.
    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor–insulator–graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler–Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm−2 (limited by series resistance), and excellent current–voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.
  • Item
    Interference structure of above-threshold ionization versus above-threshold detachment
    (Bristol : IOP, 2012) Korneev, Ph.A.; Popruzhenko, S.V.; Goreslavski, S.P.; Becker, W.; Paulus, G.G.; Fetić, B.; Milošević, D.B.
    Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.
  • Item
    In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses
    ([London] : Nature Publishing Group UK, 2018) Schneider, Michael; Günther, Christian M.; Pfau, Bastian; Capotondi, Flavio; Manfredda, Michele; Zangrando, Marco; Mahne, Nicola; Raimondi, Lorenzo; Pedersoli, Emanuele; Naumenko, Denys; Eisebitt, Stefan
    Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.
  • Item
    Correlated electronic decay following intense near-infrared ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.
  • Item
    Interatomic Coulombic Decay Processes after Multiple Valence Excitations in Ne Clusters
    (Bristol : IOP Publ., 2015) Iablonskyi, D.; Nagaya, K.; Fukuzawa, H.; Motomura, K.; Kumagai, Y.; Mondal, S.; Tachibana, T.; Takanashi, T.; Nishiyama, T.; Matsunami, K.; Johnsson, P.; Piseri, P.; Sansone, G.; Dubrouil, A.; Reduzzi, M.; Carpeggiani, P.; Vozzi, C.; Devetta, M.; Negro, M.; Faccialà, D.; Calegari, F.; Trabattoni, A.; Castrovilli, M.; Ovcharenko, Y.; Möller, T.; Mudrich, M.; Stienkemeier, F.; Coreno, M.; Alagia, M.; Schütte, B.; Berrah, N.; Callegari, C.; Plekan, O.; Finetti, P.; Spezzani, C.; Ferrari, E.; Allaria, E.; Penco, G.; Serpico, C.; De Ninno, G.; Diviacco, B.; Di Mitri, S.; Giannessi, L.; Prince, K..; Yao, M.; Ueda, K.
    We present a comprehensive analysis of autoionization processes in Ne clusters (~5000 atoms) after multiple valence excitations by free electron laser radiation. The evolution from 2-body interatomic Coulombic decay (ICD) to 3-body ICD is demonstrated when changing from surface to bulk Frenkel exciton excitation. Super Coster-Kronig type 2-body ICD is observed at Wannier exciton which quenches the main ICD channel.
  • Item
    Terahertz emission from lithium doped silicon under continuous wave interband optical excitation
    (Bristol : IOP Publ., 2015) Andrianov, A.V.; Zakhar'in, A.O.; Zhukavin, R.K.; Shastin, V.N.; Abrosimov, N.V.
    We report on experimental observation and study of terahertz emission from lithium doped silicon crystals under continuous wave band-to-band optical excitation. It is shown that radiative transitions of electrons from 2P excited states of lithium donor to the 1S(A1) donor ground state prevail in the emission spectrum. The terahertz emission occurs due to capture of nonequilibrium electrons to charged donors, which in turn are generated in the crystal as a result of impurity assisted electron-hole recombination. Besides the intracentre radiative transitions the terahertz emission spectrum exhibits also features at about 12.7 and 15.27 meV, which could be related to intraexciton transitions and transitions from the continuum to the free exciton ground state.