Search Results

Now showing 1 - 10 of 16
  • Item
    Enhanced calcium ion mobilization in osteoblasts on amino group containing plasma polymer nanolayer
    (London : BioMed Central, 2018-3-21) Staehlke, Susanne; Rebl, Henrike; Finke, Birgit; Mueller, Petra; Gruening, Martina; Nebe, J. Barbara
    Background: Biomaterial modifications—chemical and topographical—are of particular importance for the integration of materials in biosystems. Cells are known to sense these biomaterial characteristics, but it has remained unclear which physiological processes bio modifications trigger. Hence, the question arises of whether the dynamic of intracellular calcium ions is important for the characterization of the cell–material interaction. In our prior research we could demonstrate that a defined geometrical surface topography affects the cell physiology; this was finally detectable in a reduced intracellular calcium mobilization after the addition of adenosine triphosphate (ATP). Results: This new contribution examines the cell physiology of human osteoblasts concerning the relative cell viability and the calcium ion dynamic on different chemical modifications of silicon–titanium (Ti) substrates. Chemical modifications comprising the coating of Ti surfaces with a plasma polymerized allylamine (PPAAm)-layer or with a thin layer of collagen type-I were compared with a bare Ti substrate as well as tissue culture plastic. For this purpose, the human osteoblasts (MG-63 and primary osteoblasts) were seeded onto the surfaces for 24 h. The relative cell viability was determined by colorimetric measurements of the cell metabolism and relativized to the density of cells quantified using crystal violet staining. The calcium ion dynamic of osteoblasts was evaluated by the calcium imaging analysis of fluo-3 stained vital cells using a confocal laser scanning microscope. The positively charged nano PPAAm-layer resulted in enhanced intracellular calcium ion mobilization after ATP-stimulus and cell viability. This study underlines the importance of the calcium signaling for the manifestation of the cell physiology. Conclusions: Our current work provides new insights into the intracellular calcium dynamic caused by diverse chemical surface compositions. The calcium ion dynamic appears to be a sensitive parameter for the cell physiology and, thus, may represent a useful approach for evaluating a new biomaterial. In this regard, reliable in vitro-tests of cell behavior at the interface to a material are crucial steps in securing the success of a new biomaterial in medicine.
  • Item
    Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures
    (London : BioMed Central, 2016) Viell, Jörn; Inouye, Hideyo; Szekely, Noemi K.; Frielinghaus, Henrich; Marks, Caroline; Wang, Yumei; Anders, Nico; Spiess, Antje C.; Makowski, Lee
    Background: The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. Results: The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. Conclusions: The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of cells. The remaining cell wall constituents of lignin and hemicellulose, however, limit a recrystallization of the solvated cellulose. These pretreatment mechanisms are beyond common pretreatment concepts and pave the way for a formulation of mechanistic requirements of pretreatment with simpler pretreatment liquors. © 2016 Viell et al.
  • Item
    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
    (London : BioMed Central, 2016) Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen
    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
  • Item
    Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics
    (London : BioMed Central, 2016) Hoerr, Verena; Duggan, Gavin E.; Zbytnuik, Lori; Poon, Karen K.H.; Große, Christina; Neugebauer, Ute; Methling, Karen; Löffler, Bettina; Vogel, Hans J.
    Background: The emergence of antibiotic resistant pathogenic bacteria has reduced our ability to combat infectious diseases. At the same time the numbers of new antibiotics reaching the market have decreased. This situation has created an urgent need to discover novel antibiotic scaffolds. Recently, the application of pattern recognition techniques to identify molecular fingerprints in ‘omics’ studies, has emerged as an important tool in biomedical research and laboratory medicine to identify pathogens, to monitor therapeutic treatments or to develop drugs with improved metabolic stability, toxicological profile and efficacy. Here, we hypothesize that a combination of metabolic intracellular fingerprints and extracellular footprints would provide a more comprehensive picture about the mechanism of action of novel antibiotics in drug discovery programs. Results: In an attempt to integrate the metabolomics approach as a classification tool in the drug discovery processes, we have used quantitative 1H NMR spectroscopy to study the metabolic response of Escherichia coli cultures to different antibiotics. Within the frame of our study the effects of five different and well-known antibiotic classes on the bacterial metabolome were investigated both by intracellular fingerprint and extracellular footprint analysis. The metabolic fingerprints and footprints of bacterial cultures were affected in a distinct manner and provided complementary information regarding intracellular and extracellular targets such as protein synthesis, DNA and cell wall. While cell cultures affected by antibiotics that act on intracellular targets showed class-specific fingerprints, the metabolic footprints differed significantly only when antibiotics that target the cell wall were applied. In addition, using a training set of E. coli fingerprints extracted after treatment with different antibiotic classes, the mode of action of streptomycin, tetracycline and carbenicillin could be correctly predicted. Conclusion: The metabolic profiles of E. coli treated with antibiotics with intracellular and extracellular targets could be separated in fingerprint and footprint analysis, respectively and provided complementary information. Based on the specific fingerprints obtained for different classes of antibiotics, the mode of action of several antibiotics could be predicted. The same classification approach should be applicable to studies of other pathogenic bacteria.
  • Item
    Penetration of CdSe/ZnS quantum dots into differentiated vs undifferentiated Caco-2 cells
    (London : BioMed Central, 2016) Peuschel, Henrike; Ruckelshausen, Thomas; Kiefer, Silke; Silina, Yuliya; Kraegeloh, Annette
    Background: Quantum dots (QDs) have great potential as fluorescent labels but cytotoxicity relating to extra- and intracellular degradation in biological systems has to be addressed prior to biomedical applications. In this study, human intestinal cells (Caco-2) grown on transwell membranes were used to study penetration depth, intracellular localization, translocation and cytotoxicity of CdSe/ZnS QDs with amino and carboxyl surface modifications. The focus of this study was to compare the penetration depth of QDs in differentiated vs undifferentiated cells using confocal microscopy and image processing. Results: Caco-2 cells were exposed to QDs with amino (NH2) and carboxyl (COOH) surface groups for 3 days using a concentration of 45 μg cadmium ml−1. Image analysis of confocal/multiphoton microscopy z-stacks revealed no penetration of QDs into the cell lumen of differentiated Caco-2 cells. Interestingly, translocation of cadmium ions onto the basolateral side of differentiated monolayers was observed using high resolution inductively coupled plasma mass spectrometry (ICP-MS). Membrane damage was neither detected after short nor long term incubation in Caco-2 cells. On the other hand, intracellular localization of QDs after exposure to undifferentiated cells was observed and QDs were partially located within lysosomes. Conclusions: In differentiated Caco-2 monolayers, representing a model for small intestinal enterocytes, no penetration of amino and carboxyl functionalized CdSe/ZnS QDs into the cell lumen was detected using microscopy analysis and image processing. In contrast, translocation of cadmium ions onto the basolateral side could be detected using ICP-MS. However, even after long term incubation, the integrity of the cell monolayer was not impaired and no cytotoxic effects could be detected. In undifferentiated Caco-2 cells, both QD modifications could be found in the cell lumen. Only to some extend, QDs were localized in endosomes or lysosomes in these cells. The results indicate that the differentiation status of Caco-2 cells is an important factor in internalization and localization studies using Caco-2 cells. Furthermore, a combination of microscopy analysis and sensitive detection techniques like ICP-MS are necessary for studying the interaction of cadmium containing QDs with cells.
  • Item
    A comprehensive analysis of the history of DFT based on the bibliometric method RPYS
    (London : BioMed Central, 2019) Haunschild, Robin; Barth, Andreas; French, Bernie
    This bibliometric study aims at providing a comprehensive analysis of the history of density functional theory (DFT) from a perspective of chemistry by using reference publication year spectroscopy (RPYS). 114,138 publications with their 4,412,152 non-distinct cited references are analyzed. The RPYS analysis revealed three different groups of seminal papers which researchers in DFT have drawn from: (i) some long-known experimental studies from the 19th century about physical and chemical phenomena were referenced rather frequently in contemporary DFT publications. (ii) Fundamental quantum-chemical papers from the time period 1900–1950 which predate DFT form another group of seminal papers. (iii) Finally, various very frequently employed DFT approximations, basis sets, and other techniques (e.g., implicit descriptions of solvents) constitute another group of seminal papers. The earliest cited reference we found was published in 1806. The references to papers published in the 19th century mainly served the purpose of referring to long-known physical and chemical phenomena which were used to test if DFT approximations deliver correct results (e.g., Van der Waals interactions). The foundational papers of DFT by Hohenberg and Kohn as well as Kohn and Sham do not seem to be affected by obliteration by incorporation as they appear as pronounced peaks in our RPYS analysis. Since the 1990s, only very few pronounced peaks occur as most years were referenced nearly equally often. Exceptions are 1993 and 1996 due to seminal papers by Axel Becke, John P. Perdew and co-workers, and Georg Kresse and co-workers.
  • Item
    CE-UV/VIS and CE-MS for monitoring organic impurities during the downstream processing of fermentative-produced lactic acid from second-generation renewable feedstocks
    (London : BioMed Central, 2016) Laube, Hendrik; Matysik, Frank-Michael; Schmidberger, Andreas; Mehlmann, Kerstin; Toursel, Andreas
    During the downstream process of bio-based bulk chemicals, organic impurities, mostly residues from the fermentation process, must be separated to obtain a pure and ready-to-market chemical. In this study, capillary electrophoresis was investigated for the non-targeting downstream process monitoring of organic impurities and simultaneous quantitative detection of lactic acid during the purification process of fermentatively produced lactic acid. The downstream process incorporated 11 separation units, ranging from filtration, adsorption and ion exchange to electrodialysis and distillation, and 15 different second-generation renewable feedstocks were processed into lactic acid. The identification of organic impurities was established through spiking and the utilization of an advanced capillary electrophoresis mass spectrometry system
  • Item
    Evolution of DFT studies in view of a scientometric perspective
    (London : BioMed Central, 2016) Haunschild, Robin; Barth, Andreas; Marx, Werner
    Background: This bibliometric study aims to analyze the publications in which density functional theory (DFT) plays a major role. The bibliometric analysis is performed on the full publication volume of 114,138 publications as well as sub-sets defined in terms of six different types of compounds and nine different research topics. Also, a compound analysis is presented that shows how many compounds with specific elements are known to be calculated with DFT. This analysis is done for each element from hydrogen to nobelium. Results: We find that hydrogen, carbon, nitrogen, and oxygen occur most often in compounds calculated with DFT in terms of absolute numbers, but a relative perspective shows that DFT calculations were performed rather often in comparison with experiments for rare gas elements, many actinides, some transition metals, and polonium. Conclusions: The annual publication volume of DFT literature continues to grow steadily. The number of publications doubles approximately every 5-6 years while a doubling of publication volume every 11 years is observed for the CAplus database (14 years if patents are excluded). Calculations of the structure and energy of compounds dominate the DFT literature. © 2016 The Author(s).
  • Item
    Silica nanoparticles for intracellular protein delivery: A novel synthesis approach using green fluorescent protein
    (London : BioMed Central, 2017) Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
  • Item
    The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB
    (London : BioMed Central, 2019) Formicola, Beatrice; Dal, Magro, Roberta; Montefusco-Pereira, Carlos V.; Lehr, Claus‑Michael; Koch, Marcus; Russo, Laura; Grasso, Gianvito; Deriu, Marco A.; Danani, Andrea; Bourdoulous, Sandrine; Re, Francesca
    We designed liposomes dually functionalized with ApoE-derived peptide (mApoE) and chlorotoxin (ClTx) to improve their blood-brain barrier (BBB) crossing. Our results demonstrated the synergistic activity of ClTx-mApoE in boosting doxorubicin-loaded liposomes across the BBB, keeping the anti-tumour activity of the drug loaded: mApoE acts promoting cellular uptake, while ClTx promotes exocytosis of liposomes. © 2019 The Author(s).