Search Results

Now showing 1 - 9 of 9
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Multilevel HfO2-based RRAM devices for low-power neuromorphic networks
    (Melville, NY : AIP Publ., 2019) Milo, V.; Zambelli, C.; Olivo, P.
    Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable artificial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device, and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition. First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST) dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using experimental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power consumption. © 2019 Author(s).
  • Item
    Generation of millijoule few-cycle pulses at 5 μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Bock, Martin; Grafenstein, Lorenz von; Griebner, Uwe; Elsaesser, Thomas
    Spectral pulse shaping in a high-intensity midwave-infrared (MWIR) optical parametric chirped pulse amplifier (OPCPA) operating at 1 kHz repetition rate is reported. We successfully apply a MWIR spatial light modulator (SLM) for the generation of ultrashort idler pulses at 5 μm wavelength. Only bulk optics and active phase control of the 3.5 μm signal pulses via the SLM are employed for generating compressed idler pulses with a duration of 80 fs. The 80-fs pulse duration corresponds to less than five optical cycles at the central wavelength of 5.0 μm. The pulse energy amounts to 1.0 mJ, which translates into a peak power of 10 GW. The generated pulse parameters represent record values for high-intensity MWIR OPCPAs.
  • Item
    Temperature dependence of the Seebeck coefficient of epitaxial β -Ga2O3 thin films
    (Melville, NY : AIP Publ., 2019) Boy, Johannes; Handwerg, Martin; Ahrling, Robin; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the Seebeck coefficient of homoepitaxial metal organic vapor phase grown, silicon doped β-Ga 2 O 3 thin films was measured relative to aluminum. For room temperature, we found the relative Seebeck coefficient of Sβ-Ga2O3-Al=(-300±20) μV/K. At high bath temperatures T > 240 K, the scattering is determined by electron-phonon-interaction. At lower bath temperatures between T = 100 K and T = 300 K, an increase in the magnitude of the Seebeck coefficient is explained in the frame of Stratton's formula. The influence of different scattering mechanisms on the magnitude of the Seebeck coefficient is discussed and compared with Hall measurement results. © 2019 Author(s).
  • Item
    Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy
    (Melville, NY : AIP Publ., 2017) Paik, Hanjong; Chen, Zhen; Lochocki, Edward; Seidner H., Ariel; Verma, Amit; Tanen, Nicholas; Park, Jisung; Uchida, Masaki; Shang, ShunLi; Zhou, Bi-Cheng; Brützam, Mario; Uecker, Reinhard; Liu, Zi-Kui; Jena, Debdeep; Shen, Kyle M.; Muller, David A.; Schlom, Darrell G.
    Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001) DyScO3 substrate exhibited a mobility of 183 cm2 V-1 s-1 at room temperature and 400 cm2 V-1 s-1 at 10 K despite the high concentration (1.2 × 1011 cm-2) of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO)2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects - possibly (BaO)2 crystallographic shear defects or point defects - significantly reduce the electron mobility.
  • Item
    Research Update: Van-der-Waals epitaxy of layered chalcogenide Sb2Te3 thin films grown by pulsed laser deposition
    (Melville, NY : AIP Publ., 2017) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    An attempt to deposit a high quality epitaxial thin film of a two-dimensionally bonded (layered) chalcogenide material with van-der-Waals (vdW) epitaxy is of strong interest for non-volatile memory application. In this paper, the epitaxial growth of an exemplary layered chalcogenide material, i.e., stoichiometric Sb2Te3 thin films, is reported. The films were produced on unreconstructed highly lattice-mismatched Si(111) substrates by pulsed laser deposition (PLD). The films were grown by vdW epitaxy in a two-dimensional mode. X-ray diffraction measurements and transmission electron microscopy revealed that the films possess a trigonal Sb2Te3 structure. The single atomic Sb/Te termination layer on the Si surface was formed initializing the thin film growth. This work demonstrates a straightforward method to deposit vdW-epitaxial layered chalcogenides and, at the same time, opens up the feasibility to fabricate chalcogenide vdW heterostructures by PLD.
  • Item
    Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
    (Melville, NY : AIP Publ., 2019) Schewski, R.; Lion, K.; Fiedler, A.; Wouters, C.; Popp, K.; Levchenko, S.V.; Schulz, T.; Schmidbauer, M.; Bin Anooz, S.; Grüneberg, R.; Galazka, Z.; Wagner, G.; Irmscher, K.; Scheffler, M.; Draxl, C.; Albrecht, M.
    We present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001⎯⎯] direction show high electron mobilities of about 90 cm2 V−1 s−1 at electron concentrations in the range of 1–2 × 1018 cm−3, while layers grown under identical conditions but with 6° miscut toward the [001] direction exhibit low electron mobilities of around 10 cm2 V−1 s−1. By using high-resolution scanning transmission electron microscopy and atomic force microscopy, we find significant differences in the surface morphologies of the substrates after annealing and of the layers in dependence on their miscut direction. While substrates with miscuts toward [001⎯⎯] exhibit monolayer steps terminated by (2⎯⎯01) facets, mainly bilayer steps are found for miscuts toward [001]. Epitaxial growth on both substrates occurs in step-flow mode. However, while layers on substrates with a miscut toward [001⎯⎯] are free of structural defects, those on substrates with a miscut toward [001] are completely twinned with respect to the substrate and show stacking mismatch boundaries. This twinning is promoted at step edges by transformation of the (001)-B facets into (2⎯⎯01) facets. Density functional theory calculations of stoichiometric low index surfaces show that the (2⎯⎯01) facet has the lowest surface energy following the (100) surface. We conclude that facet transformation at the step edges is driven by surface energy minimization for the two kinds of crystallographically inequivalent miscut orientations in the monoclinic lattice of β-Ga2O3.
  • Item
    The thermal stability of epitaxial GeSn layers
    (Melville, NY : AIP Publ., 2018) Zaumseil, P.; Hou, Y.; Schubert, M.A.; von den Driesch, N.; Stange, D.; Rainko, D.; Virgilio, M.; Buca, D.; Capellini, G.
    We report on the direct observation of lattice relaxation and Sn segregation of GeSn/Ge/Si heterostructures under annealing. We investigated strained and partially relaxed epi-layers with Sn content in the 5 at. %-12 at. % range. In relaxed samples, we observe a further strain relaxation followed by a sudden Sn segregation, resulting in the separation of a β-Sn phase. In pseudomorphic samples, a slower segregation process progressively leads to the accumulation of Sn at the surface only. The different behaviors are explained by the role of dislocations in the Sn diffusion process. The positive impact of annealing on optical emission is also discussed.
  • Item
    The electronic structure of ϵ-Ga2O3
    (Melville, NY : AIP Publ., 2019) Mulazzi, M.; Reichmann, F.; Becker, A.; Klesse, W.M.; Alippi, P.; Fiorentini, V.; Parisini, A.; Bosi, M.; Fornari, R.
    The electronic structure of ε-Ga2O3 thin films has been investigated by ab initio calculations and photoemission spectroscopy with UV, soft, and hard X-rays to probe the surface and bulk properties. The latter measurements reveal a peculiar satellite structure in the Ga 2p core level spectrum, absent at the surface, and a core-level broadening that can be attributed to photoelectron recoil. The photoemission experiments indicate that the energy separation between the valence band and the Fermi level is about 4.4 eV, a valence band maximum at the Γ point and an effective mass of the highest lying bands of – 4.2 free electron masses. The value of the bandgap compares well with that obtained by optical experiments and with that obtained by calculations performed using a hybrid density-functional, which also reproduce well the dispersion and density of states.