Search Results

Now showing 1 - 10 of 17
  • Item
    3+2 + X : what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
    (Katlenburg-Lindau : Copernicus, 2019) Tesche, Matthias; Kolgotin, Alexei; Haarig, Moritz; Burton, Sharon P.; Ferrare, Richard A.; Hostetler, Chris A.; Müller, Detlef
    The typical multiwavelength aerosol lidar data set for inversion of optical to microphysical parameters is composed of three backscatter coefficients (β) at 355, 532, and 1064 nm and two extinction coefficients (α) at 355 and 532 nm. This data combination is referred to as a 3β C 2α or 3 + 2 data set. This set of data is sufficient for retrieving some important microphysical particle parameters if the particles have spherical shape. Here, we investigate the effect of including the particle linear depolarization ratio (δ) as a third input parameter for the inversion of lidar data. The inversion algorithm is generally not used if measurements show values of d that exceed 0.10 at 532 nm, i.e. in the presence of nonspherical particles such as desert dust, volcanic ash, and, under special circumstances, biomass-burning smoke. We use experimental data collected with instruments that are capable of measuring d at all three lidar wavelengths with an inversion routine that applies the spheroidal light-scattering model of Dubovik et al. (2006) with a fixed axis-ratio distribution to replicate scattering properties of non-spherical particles. The inversion gives the fraction of spheroids required to replicate the optical data as an additional output parameter. This is the first systematic test of the effect of using all theoretically possible combinations of d taken at 355, 532, and 1064 nm as input in the lidar data inversion. We find that depolarization information of at least one wavelength already provides useful information for the inversion of optical data that have been collected in the presence of non-spherical mineral dust particles. However, any choice of d will give lower values of the single-scattering albedo than the traditional 3 + 2 data set. We find that input data sets that include d355 give a spheroid fraction that closely resembles the dust ratio we obtain from using β532 and d532 in a methodology applied in aerosol-type separation. The use of d355 in data sets of two or three d? reduces the spheroid fraction that is retrieved when using d532 and d1064. Use of the latter two parameters without accounting for d355 generally leads to high spheroid fractions that we consider not trustworthy. The use of three d instead of two δ, including the constraint that one of these is measured at 355 nm does not provide any advantage over using 3 + 2 + d355 for the observations with varying contributions of mineral dust considered here. However, additional measurements at wavelengths different from 355 nm would be desirable for application to a wider range of aerosol scenarios that may include non-spherical smoke particles, which can have values of d355 that are indistinguishable from those found for mineral dust. We therefore conclude that - depending on measurement capability - the future standard input for inversion of lidar data taken in the presence of mineral dust particles and using the spheroid model of Dubovik et al. (2006) might be 3+2Cδ355 or 3 + 2 + δ355 + δ532. © 2019 The Author(s).
  • Item
    GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures
    (Katlenburg-Lindau : Copernicus, 2017) Tsekeri, Alexandra; Lopatin, Anton; Amiridis, Vassilis; Marinou, Eleni; Igloffstein, Julia; Siomos, Nikolaos; Solomos, Stavros; Kokkalis, Panagiotis; Engelmann, Ronny; Baars, Holger; Gratsea, Myrto; Raptis, Panagiotis I.; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Kalivitis, Nikolaos; Kouvarakis, Giorgos; Bartsotas, Nikolaos; Kallos, George; Basart, Sara; Schuettemeyer, Dirk; Wandinger, Ulla; Ansmann, Albert; Chaikovsky, Anatoli P.; Dubovik, Oleg
    The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp). Three case studies are presented, focusing on dust-dominated, marinedominated and dust-marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.
  • Item
    PeakTree: A framework for structure-preserving radar Doppler spectra analysis
    (Göttingen : Copernicus GmbH, 2019) Radenz, M.; Bühl, J.; Seifert, P.; Griesche, H.; Engelmann, R.
    Clouds are frequently composed of more than one particle population even at the smallest scales. Cloud radar observations frequently contain information on multiple particle species in the observation volume when there are distinct peaks in the Doppler spectrum. Multi-peaked situations are not taken into account by established algorithms, which only use moments of the Doppler spectrum. In this study, we propose a new algorithm that recursively represents the subpeaks as nodes in a binary tree. Using this tree data structure to represent the peaks of a Doppler spectrum, it is possible to drop all a priori assumptions on the number and arrangement of subpeaks. The approach is rigid, unambiguous and can provide a basis for advanced analysis methods. The applicability is briefly demonstrated in two case studies, in which the tree structure was used to investigate particle populations in Arctic multilayered mixed-phase clouds, which were observed during the research vessel Polarstern expedition PS106 and the Atmospheric Radiation Measurement Program BAECC campaign.
  • Item
    Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements
    (Katlenburg-Lindau : Copernicus, 2018) Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; del Águila, Ana; Baars, Holger
    The application of the POLIPHON (POlarization-LIdar PHOtometer Networking) method is presented for the first time in synergy with continuous 24/7 polarized Micro-Pulse Lidar (P-MPL) measurements to derive the vertical separation of two or three particle components in different aerosol mixtures, and the retrieval of their particular optical properties. The procedure of extinction-to-mass conversion, together with an analysis of the mass extinction efficiency (MEE) parameter, is described, and the relative mass contribution of each aerosol component is also derived in a further step. The general POLIPHON algorithm is based on the specific particle linear depolarization ratio given for different types of aerosols and can be run in either 1-step (POL-1) or 2 steps (POL-2) versions with dependence on either the 2- or 3-component separation. In order to illustrate this procedure, aerosol mixing cases observed over Barcelona (NE Spain) are selected: a dust event on 5 July 2016, smoke plumes detected on 23 May 2016 and a pollination episode observed on 23 March 2016. In particular, the 3-component separation is just applied for the dust case: a combined POL-1 with POL-2 procedure (POL-1/2) is used, and additionally the fine-dust contribution to the total fine mode (fine dust plus non-dust aerosols) is estimated. The high dust impact before 12:00 UTC yields a mean mass loading of 0.6±0.1 g m'2 due to the prevalence of Saharan coarse-dust particles. After that time, the mean mass loading is reduced by two-thirds, showing a rather weak dust incidence. In the smoke case, the arrival of fine biomass-burning particles is detected at altitudes as high as 7 km. The smoke particles, probably mixed with less depolarizing non-smoke aerosols, are observed in air masses, having their origin from either North American fires or the Arctic area, as reported by HYSPLIT back-trajectory analysis. The particle linear depolarization ratio for smoke shows values in the 0.10-0.15 range and even higher at given times, and the daily mean smoke mass loading is 0.017±0.008 g m'2, around 3 % of that found for the dust event. Pollen particles are detected up to 1.5 km in height from 10:00 UTC during an intense pollination event with a particle linear depolarization ratio ranging between 0.10 and 0.15. The maximal mass loading of Platanus pollen particles is 0.011±0.003 g m'2, representing around 2 % of the dust loading during the higher dust incidence. Regarding the MEE derived for each aerosol component, their values are in agreement with others referenced in the literature for the specific aerosol types examined in this work: 0.5±0.1 and 1.7±0.2 m2 g'1 are found for coarse and fine dust particles, 4.5±1.4 m2 g'1 is derived for smoke and 2.4±0.5 m2 g'1 for non-smoke aerosols with Arctic origin, and a MEE of 2.4±0.8 m2 g'1 is obtained for pollen particles, though it can reach higher or lower values depending on predominantly smaller or larger pollen grain sizes. Results reveal the high potential of the P-MPL system, a simple polarization-sensitive elastic backscatter lidar working in a 24/7 operation mode, to retrieve the relative optical and mass contributions of each aerosol component throughout the day, reflecting the daily variability of their properties. In fact, this procedure can be simply implemented in other P-MPLs that also operate within the worldwide Micro-Pulse Lidar Network (MPLNET), thus extending the aerosol discrimination at a global scale. Moreover, the method has the advantage of also being relatively easily applicable to space-borne lidars with an equivalent configuration such as the ongoing Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board NASA CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) and the forthcoming Atmospheric Lidar (ATLID) on board the ESA EarthCARE mission.
  • Item
    New particle formation in the Svalbard region 2006-2015
    (Katlenburg-Lindau : EGU, 2017) Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
    Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical "banana type" of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multisize growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
  • Item
    High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells
    (Cambridge : Royal Society of Chemistry, 2019) Rüger J.; Mondol A.S.; Schie I.W.; Popp J.; Krafft C.
    High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages. © 2019 The Royal Society of Chemistry.
  • Item
    Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn
    ([London] : Nature Publishing Group UK, 2019) Reichlova, Helena; Janda, Tomas; Godinho, Joao; Markou, Anastasios; Kriegner, Dominik; Schlitz, Richard; Zelezny, Jakub; Soban, Zbynek; Bejarano, Mauricio; Schultheiss, Helmut; Nemec, Petr; Jungwirth, Tomas; Felser, Claudia; Wunderlich, Joerg; Goennenwein, Sebastian T. B.
    Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials—Mn3Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.
  • Item
    Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns
    (Göttingen : Copernicus GmbH, 2018) Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; Hanasaki, N.; Wada, Y.
    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
  • Item
    Retrieving horizontally resolved wind fields using multi-static meteor radar observations
    (Göttingen : Copernicus GmbH, 2018) Stober, G.; Chau, J.L.; Vierinen, J.; Jacobi, C.; Wilhelm, S.
    Recently, the MMARIA (Multi-static, Multi-frequency Agile Radar for Investigations of the Atmosphere) concept of a multi-static VHF meteor radar network to derive horizontally resolved wind fields in the mesosphere-lower thermosphere was introduced. Here we present preliminary results of the MMARIA network above Eastern Germany using two transmitters located at Juliusruh and Collm, and five receiving links: two monostatic and three multi-static. The observations are complemented during a one-week campaign, with a couple of addition continuous-wave coded transmitters, making a total of seven multi-static links. In order to access the kinematic properties of non-homogenous wind fields, we developed a wind retrieval algorithm that applies regularization to determine the non-linear wind field in the altitude range of 82-98 km. The potential of such observations and the new retrieval to investigate gravity waves with horizontal scales between 50-200 km is presented and discussed. In particular, it is demonstrated that horizonal wavelength spectra of gravity waves can be obtained from the new data set. © Author(s) 2018.
  • Item
    Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds
    (Göttingen : Copernicus GmbH, 2018) Radenz, M.; Bühl, J.; Lehmann, V.; Görsdorf, U.; Leinweber, R.
    Vertical-stare observations from a 482MHz radar wind profiler and a 35GHz cloud radar are combined on the level of individual Doppler spectra to measure vertical air motions in clear air, clouds and precipitation. For this purpose, a separation algorithm is proposed to remove the influence of falling particles from the wind profiler Doppler spectra and to calculate the terminal fall velocity of hydrometeors. The remaining error of both vertical air motion and terminal fall velocity is estimated to be better than 0.1ms-1 using numerical simulations. This combination of instruments allows direct measurements of in-cloud vertical air velocity and particle terminal fall velocity by means of ground-based remote sensing. The possibility of providing a profile every 10s with a height resolution of < 100m allows further insight into the process scale of in-cloud dynamics. The results of the separation algorithm are illustrated by two case studies, the first covering a deep frontal cloud and the second featuring a shallow mixed-phase cloud.