Search Results

Now showing 1 - 10 of 10
  • Item
    Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation
    (Washington, DC : ACS Publications, 2015) Buchner, Franziska; Nakayama, Akira; Yamazaki, Shohei; Ritze, Hans-Hermann; Lübcke, Andrea
    Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.
  • Item
    Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields
    (Cambridge [u.a.] : Soc., 2016) Bruner, Barry D.; Mašín, Zdeněk; Negro, Matteo; Morales, Felipe; Brambila, Danilo; Devetta, Michele; Faccialà, Davide; Harvey, Alex G.; Ivanov, Misha; Mairesse, Yann; Patchkovskii, Serguei; Serbinenko, Valeria; Soifer, Hadas; Stagira, Salvatore; Vozzi, Caterina; Dudovich, Nirit; Smirnova, Olga
    High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems.
  • Item
    Enhancing laser beam performance by interfering intense laser beamlets
    ([London] : Nature Publishing Group UK, 2019) Morace, A.; Iwata, N.; Sentoku, Y.; Mima, K.; Arikawa, Y.; Yogo, A.; Andreev, A.; Tosaki, S.; Vaisseau, X.; Abe, Y.; Kojima, S.; Sakata, S.; Hata, M.; Lee, S.; Matsuo, K.; Kamitsukasa, N.; Norimatsu, T.; Kawanaka, J.; Tokita, S.; Miyanaga, N.; Shiraga, H.; Sakawa, Y.; Nakai, M.; Nishimura, H.; Azechi, H.; Fujioka, S.; Kodama, R.
    Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.
  • Item
    Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
    ([London] : Nature Publishing Group UK, 2015) Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.
  • Item
    Attosecond time-resolved photoelectron holography
    ([London] : Nature Publishing Group UK, 2018) Porat, G.; Alon, G.; Rozen, S.; Pedatzur, O.; Krüger, M.; Azoury, D.; Natan, A.; Orenstein, G.; Bruner, B.D.; Vrakking, M. J.J.; Dudovich, N.
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography - all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds.
  • Item
    Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters
    ([London] : Nature Publishing Group UK, 2017) Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F.; Fennel, Thomas
    In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.
  • Item
    X-ray imaging of chemically active valence electrons during a pericyclic reaction
    (London : Nature Publishing Group, 2014) Bredtmann, T.; Ivanov, M.; Dixit, G.
    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions.
  • Item
    Anisotropic photoemission time delays close to a Fano resonance
    ([London] : Nature Publishing Group UK, 2018) Cirelli, Claudio; Marante, Carlos; Heuser, Sebastian; Petersson, C.L.M.; Galán, Álvaro Jiménez; Argenti, Luca; Zhong, Shiyang; Busto, David; Isinger, Marcus; Nandi, Saikat; Maclot, Sylvain; Rading, Linnea; Johnsson, Per; Gisselbrecht, Mathieu; Lucchini, Matteo; Gallmann, Lukas; Dahlström, J. Marcus; Lindroth, Eva; L’Huillier, Anne; Martín, Fernando; Keller, Ursula
    Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20-40 eV spectral range, in the vicinity of the 3s -1 np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence.
  • Item
    Few-femtosecond passage of conical intersections in the benzene cation
    ([London] : Nature Publishing Group UK, 2017) Galbraith, M.C.E.; Scheit, S.; Golubev, N.V.; Reitsma, G.; Zhavoronkov, N.; Despré, V.; Lépine, F.; Kuleff, A.I.; Vrakking, M.J.J.; Kornilov, O.; Köppel, H.; Mikosch, J.
    Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system - the excited benzene cation. We use few-femtosecond duration extreme ultraviolet and visible/near-infrared laser pulses to prepare and probe excited cationic states and observe two relaxation timescales of 11 ± 3 fs and 110 ± 20 fs. These are interpreted in terms of population transfer via two sequential conical intersections. The experimental results are quantitatively compared with state-of-the-art multi-configuration time-dependent Hartree calculations showing convincing agreement in the timescales. By characterising one of the fastest internal conversion processes studied to date, we enter an extreme regime of ultrafast molecular dynamics, paving the way to tracking and controlling purely electronic dynamics in complex molecules.
  • Item
    Tracing dynamics of laser-induced fields on ultra-thin foils using complementary imaging with streak deflectometry
    (College Park, MD : American Physical Society, 2016) Abicht, Florian; Braenzel, Julia; Priebe, Gerd; Koschitzki, Christian; Andreev, Alexander; Nickles, Peter; Sander, Wolfgang; Schnürer, Matthias
    We present a detailed study of the electric and magnetic fields, which are created on plasma vacuum interfaces as a result of highly intense laser-matter interactions. For the field generation ultrathin polymer foils (30–50 nm) were irradiated with high intensity femtosecond (1019–1020  W/cm2) and picosecond (∼1017  W/cm2) laser pulses with ultrahigh contrast (1010–1011). To determine the temporal evolution and the spatial distribution of these fields the proton streak deflectometry method has been developed further and applied in two different imaging configurations. It enabled us to gather complementary information about the investigated field structure, in particular about the influence of different field components (parallel and normal to the target surface) and the impact of a moving ion front. The applied ultrahigh laser contrast significantly increased the reproducibility of the experiment and improved the accuracy of the imaging method. In order to explain the experimental observations, which were obtained by applying ultrashort laser pulses, two different analytical models have been studied in detail. Their ability to reproduce the streak deflectometry measurements was tested on the basis of three-dimensional particle simulations. A modification and combination of the two models allowed for an extensive and accurate reproduction of the experimental results in both imaging configurations. The controlled change of the laser pulse duration from 50 femtoseconds to 2.7 picoseconds led to a transition of the dominating force acting on the probing proton beam at the rear side of the polymer foil. In the picosecond case the (⇀vx⇀B)-term of the Lorentz force dominated over the counteracting ⇀E-field and was responsible for the direction of the net force. The applied proton deflectometry method allowed for an unambiguous determination of the magnetic field polarity at the rear side of the ultrathin foil.