Search Results

Now showing 1 - 10 of 451
  • Item
    Inactivation of airborne bacteria by plasma treatment and ionic wind for indoor air cleaning
    (Hoboken, NJ : Wiley Interscience, 2020) Prehn, Franziska; Timmermann, Eric; Kettlitz, Manfred; Schaufler, Katharina; Günther, Sebastian; Hahn, Veronika
    Airborne bacteria are a general problem in medical or health care facilities with a high risk for nosocomial infections. Rooms with a continuous airflow, such as operation theaters, are of particular importance due to a possible dissemination and circulation of pathogens including multidrug-resistant microorganisms. In this regard, a cold atmospheric-pressure plasma (CAP) may be a possibility to support usual disinfection procedures due to its decontaminating properties. The aim of this study was to determine the antimicrobial efficacy of a plasma decontamination module that included a dielectric barrier discharge for plasma generation. Experimental parameters such as an airflow velocity of 4.5 m/s and microbial contaminations of approximately 6,000 colony-forming units (cfu)/m3 were used to simulate practical conditions of a ventilation system in an operating theater. The apathogenic microorganism Escherichia coli K12 DSM 11250/NCTC 10538 and the multidrug-resistant strains E. coli 21181 and 21182 (isolated from patients) were tested to determine the antimicrobial efficacy. In summary, the number of cfu was reduced by 31–89% for the tested E. coli strains, whereby E. coli K12 was the most susceptible strain toward inactivation by the designed plasma module. A possible correlation between the number or kind of resistances and susceptibility against plasma was discussed. The inactivation of microorganisms was affected by plasma intensity and size of the plasma treatment area. In addition, the differences of the antimicrobial efficacies caused through the nebulization of microorganisms in front (upstream) or behind (downstream) the plasma source were compared. The presence of ionic wind had no influence on the reduction of the number of cfu for E. coli K12, as the airflow velocity was too high for a successful precipitation, which would be a prerequisite for an increased antimicrobial efficacy. The inactivation of the tested microorganisms confirms the potential of CAP for the improvement of air quality. The scale-up of this model system may provide a novel tool for an effective air cleaning process.
  • Item
    Strong-Field Ionization of Linear Molecules by a Bichromatic Elliptically Polarized Laser Field with Coplanar Counterrotating or Corotating Components of Different Frequencies
    (Bristol : IOP Publ., 2020) Gazibegović-Busuladžić, A.; Busuladžić, M.; Čerkić, A.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate strong-field ionization of linear molecules by a two-color laser field of frequencies rω and sω having coplanar counterrotating or corotating elliptically polarized components (ω is the fundamental laser field frequency and r and s are integers). Using the improved molecular strong-field approximation we analyze direct above-threshold ionization (ATI) and high-order ATI (HATI) spectra. More precisely, reflection and rotational symmetries of these spectra for linear molecules aligned in the laser-field polarization plane are considered. The reflection symmetries for particular molecular orientations, known to be valid for a bicircular field (this is the field with circularly polarized counterrotating components), are valid also for arbitrary component ellipticities. However, specific rotational symmetries that are satisfied for HATI by a bicircular field, are violated for an arbitrary elliptically polarized field with counterrotating components. For the corotating case and the N2 molecule we analyze molecular-orientation-dependent interferences and plateau structures for various ellipticities.
  • Item
    35 W continuous-wave Ho:YAG single-crystal fiber laser
    (Cambridge : Cambridge Univ. Press, 2020) Zhao, Yongguang; Wang, Li; Chen, Weidong; Wang, Jianlei; Song, Qingsong; Xu, Xiaodong; Liu, Ying; Shen, Deyuan; Xu, Jun; Mateos, Xavier; Loiko, Pavel; Wang, Zhengping; Xu, Xinguang; Griebner, Uwe; Petrov, Valentin
    We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of at. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 spectral range. © 2020 The Author(s). Published by Cambridge University Press in association with Chinese Laser Press.
  • Item
    Comparative studies of low-intensity short-length arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Baeva, M.; Siewert, E.; Uhrlandt, D.
    We present results obtained by two non-equilibrium modelling approaches and experiments on low-intensity short-length arcs in argon at atmospheric pressure. The first one considers a quasi-neutral arc column combined with boundary conditions on the electrodes based on the energy balance in the space-charge sheaths. The second approach applies a unified description over the entire gap and solves the Poisson equation for the self-consistent electric field. The experiments provide the arc voltage.
  • Item
    3D analysis of low-voltage gas-filled DC switch using simplified arc model
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Gortschakow, S.; Gonzalez, D.; Yu, S.; Werner, F.
    Electro-magnetic simulations have been used for the visualization of distribution of Lorentz force acting on a DC switching arc in low-voltage contactor. A simplified plasma model (black-box model) was applied for the description of arc conductivity. Arc geometry was gained from the high-speed camera images. Influence of arc position, arc current and of external magnetic field has been studied. Results have been compared with optical observations of the arc dynamics.
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Self-assembly of highly sensitive 3D magnetic field vector angular encoders
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Becker, C.; Karnaushenko, D.; Kang, T.; Karnaushenko, D.D.; Faghih, M.; Mirhajivarzaneh, A.; Schmidt, O.G.
    Novel robotic, bioelectronic, and diagnostic systems require a variety of compact and high-performance sensors. Among them, compact three-dimensional (3D) vector angular encoders are required to determine spatial position and orientation in a 3D environment. However, fabrication of 3D vector sensors is a challenging task associated with time-consuming and expensive, sequential processing needed for the orientation of individual sensor elements in 3D space. In this work, we demonstrate the potential of 3D self-assembly to simultaneously reorient numerous giant magnetoresistive (GMR) spin valve sensors for smart fabrication of 3D magnetic angular encoders. During the self-assembly process, the GMR sensors are brought into their desired orthogonal positions within the three Cartesian planes in a simultaneous process that yields monolithic high-performance devices. We fabricated vector angular encoders with equivalent angular accuracy in all directions of 0.14°, as well as low noise and low power consumption during high-speed operation at frequencies up to 1 kHz.
  • Item
    Finishing of metal optics by ion beam technologies
    (Bellingham, Wash. : SPIE, 2019) Bauer, Jens; Frost, Frank; Lehmann, Antje; Ulitschka, Melanie; Li, Yaguo; Arnold, Thomas
    Ultraprecise mirror devices show considerable potential with view to applications in the visible and the ultraviolet spectral ranges. Aluminum alloys gather good mechanical and excellent optical properties and thus they emerge as important mirror construction materials. However, ultraprecision machining and polishing of optical aluminum surfaces are challenging, which originates from the high chemical reactivity and the heterogeneous matrix structure. Recently, several ion beam-based techniques have been developed to qualify aluminum mirrors for short-wavelength applications. We give an overview of the state-of-the-art ion beamprocessing techniques for figure error correction and planarization, either by direct aluminum machining or with the aid of polymer or inorganic, amorphous surface films. © The Authors.
  • Item
    Charged domains in ferroelectric, polycrystalline yttrium manganite thin films resolved with scanning electron microscopy
    (Bristol : IOP Publ., 2020) Rayapati, Venkata Rao; Bürger, Danilo; Du, Nan; Kowol, Cornelia; Blaschke, Daniel; Stöcker, Hartmut; Matthes, Patrick; Patra, Rajkumar; Skorupa, Ilona; Schulz, Stefan E.; Schmidt, Heidemarie
    We have investigated ferroelectric charged domains in polycrystalline hexagonal yttrium manganite thin films (Y1Mn1O3, Y0.95Mn1.05O3, Y1Mn0.99Ti0.01O3, and Y0.94Mn1.05Ti0.01O3) by scanning electron microscopy (SEM) in secondary electron emission mode with a small acceleration voltage. Using SEM at an acceleration voltage of 1.0 kV otherwise homogenous surface charging effects are reduced, polarization charges can be observed and polarization directions (±Pz) of the ferroelectric domains in the polycrystalline thin films can be identified. Thin films of different chemical composition have been deposited by pulsed laser deposition on Pt/SiO2/Si structures under otherwise same growth conditions. Using SEM it has been shown that different charged domain density networks are existing in polycrystalline yttrium manganite thin films. © 2020 IOP Publishing Ltd.
  • Item
    Generalization of coupled S-parameter calculation to compute beam impedances in particle accelerators
    (College Park, MD : American Physical Society, 2020) Flisgen, Thomas; Gjonaj, Erion; Glock, Hans-Walter; Tsakanian, Andranik
    In this article, a decomposition approach for the computation of beam coupling impedances is proposed. This approach can account for the mutual electromagnetic coupling in long accelerator structures consisting of several consecutive segments. The method is based on the description of the individual segments using a multimodal network matrix formulation in which the charged particle beam is considered as an additional port. Then, the generalized multimodal network matrices of all segments are combined to a multimodal network matrix of the complete structure. The beam coupling impedance as well as the scattering parameters of the full structure are recovered as particular matrix elements in this multimodal network matrix. The new method generalizes Coupled S-Parameter Calculation (CSC) introduced in earlier work such that charged particle beams are considered. Consequently, the introduced scheme is referred to as CSC. Application examples for realistic accelerator components such as the simulation of a full TESLA 1.3 GHz-cavity of the European XFEL are provided. These simulations demonstrate the high accuracy and numerical performance of the proposed method.