Search Results

Now showing 1 - 10 of 22
  • Item
    Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network
    (Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, Yixin
    Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
  • Item
    Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures
    (Weinheim : Wiley-VCH, 2019) Wei, Ren; Breite, Daniel; Song, Chen; Gräsing, Daniel; Ploss, Tina; Hille, Patrick; Schwerdtfeger, Ruth; Matysik, Jörg; Schulze, Agnes; Zimmermann, Wolfgang
    Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.
  • Item
    EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength
    (Weinheim : Wiley-VCH, 2020) Hosseini, Kamran; Taubenberger, Anna; Werner, Carsten; Fischer-Friedrich, Elisabeth
    To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
  • Item
    DNA Nanotechnology Enters Cell Membranes
    (Weinheim : Wiley-VCH, 2019) Huo, Shuaidong; Li, Hongyan; Boersma, Arnold J.; Herrmann, Andreas
    DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.
  • Item
    Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane
    (Weinheim : Wiley-VCH, 2019) Gumz, Hannes; Boye, Susanne; Iyisan, Banu; Krönert, Vera; Formanek, Petr; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
  • Item
    Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion
    (Weinheim : Wiley-VCH, 2020) Bekeschus, Sander; Clemen, Ramona; Nießner, Felix; Sagwal, Sanjeev Kumar; Freund, Eric; Schmidt, Anke
    Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.
  • Item
    Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering
    (Weinheim : Wiley-VCH, 2020) Cui, Qing; Bell, Daniel Josef; Rauer, Sebastian Bernhard; Wessling, Matthias
    Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 μm diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage
    (Weinheim : Wiley-VCH, 2019) Dedisch, Sarah; Obstals, Fabian; los Santos Pereira, Andres; Bruns, Michael; Jakob, Felix; Schwaneberg, Ulrich; Rodriguez‐Emmenegger, Cesar
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All-Solid-State Batteries
    (Weinheim : Wiley-VCH, 2020) Philipp, Martin; Gadermaier, Bernhard; Posch, Patrick; Hanzu, Ilie; Ganschow, Steffen; Meven, Martin; Rettenwander, Daniel; Redhammer, Günther J.; Wilkening, H. Martin R.
    The next-generation of all-solid-state lithium batteries need ceramic electrolytes with very high ionic conductivities. At the same time a negligible electronic conductivity σeon is required to eliminate self-discharge in such systems. A non-negligible electronic conductivity may also promote the unintentional formation of Li dendrites, being currently one of the key issues hindering the development of long-lasting all-solid-state batteries. This interplay is suggested recently for garnet-type Li7La3Zr2O12 (LLZO). It is, however, well known that the overall macroscopic electronic conductivity may be governed by a range of extrinsic factors such as impurities, chemical inhomogeneities, grain boundaries, morphology, and size effects. Here, advantage of Czochralski-grown single crystals, which offer the unique opportunity to evaluate intrinsic properties of a chemically homogeneous matrix, is taken to measure the electronic conductivity σeon. Via long-time, high-precision potentiostatic polarization experiments an upper limit of σeon in the order of 5 × 10−10 S cm−1 (293 K) is estimated. This value is by six orders of magnitude lower than the corresponding total conductivity σtotal = 10−3 S cm−1 of Ga-LLZO. Thus, it is concluded that the high values of σeon recently reported for similar systems do not necessarily mirror intragrain bulk properties of chemically homogenous systems but may originate from chemically inhomogeneous interfacial areas. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim