Search Results

Now showing 1 - 10 of 12
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Human spermbots for patient-representative 3D ovarian cancer cell treatment
    (Cambridge : RSC Publ., 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Zhang, Wunan; Seaton, Melanie P. H.; Brison, Daniel R.; Edmondson, Richard J.; Taylor, Stephen S.; Nelson, Louisa; Zeng, Kang; Bagley, Steven; Ribeiro, Carla; Restrepo, Lina P.; Lucena, Elkin; Schmidt, Christine K.; Schmidt, Oliver G.
    Cellular micromotors are attractive for locally delivering high concentrations of drug, and targeting hard-to-reach disease sites such as cervical cancer and early ovarian cancer lesions by non-invasive means. Spermatozoa are highly efficient micromotors perfectly adapted to traveling up the female reproductive system. Indeed, bovine sperm-based micromotors have shown potential to carry drugs toward gynecological cancers. However, due to major differences in the molecular make-up of bovine and human sperm, a key translational bottleneck for bringing this technology closer to the clinic is to transfer this concept to human material. Here, we successfully load human sperm with Doxorubicin (DOX) and perform treatment of 3D cervical cancer and patient-representative ovarian cancer cell cultures, resulting in strong anticancer cell effects. Additionally, we define the subcellular localization of the chemotherapeutic drug within human sperm, using high-resolution optical microscopy. We also assess drug effects on sperm motility and viability over time, employing sperm samples from healthy donors as well as assisted reproduction patients. Finally, we demonstrate guidance and release of human drug-loaded sperm onto cancer tissues using magnetic microcaps, and show the sperm microcap loaded with a second anticancer drug, camptothecin (CPT), which unlike DOX is not suitable for directly loading into sperm due to its hydrophobic nature. This co-drug delivery approach opens up novel targeted combinatorial drug therapies for future applications. © 2020 The Royal Society of Chemistry.
  • Item
    Tailoring biocompatible Ti-Zr-Nb-Hf-Si metallic glasses based on high-entropy alloys design approach
    (Amsterdam : Elsevier, 2020) Calin, Mariana; Vishnu, Jithin; Thirathipviwat, Pramote; Popa, Monica-Mihaela; Krautz, Maria; Manivasagam, Geetha; Gebert, Annett
    Present work unveils novel magnetic resonance imaging (MRI) compatible glassy Ti-Zr-Nb-Hf-Si alloys designed based on a high entropy alloys approach, by exploring the central region of multi-component alloy phase space. Phase analysis has revealed the amorphous structure of developed alloys, with a higher thermal stability than the conventional metallic glasses. The alloys exhibit excellent corrosion properties in simulated body fluid. Most importantly, the weak paramagnetic nature (ultralow magnetic susceptibility) and superior radiopacity (high X-ray attenuation coefficients) offer compatibility with medical diagnostic imaging systems thereby opening unexplored realms for biomedical applications.
  • Item
    Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
    (Cambridge : RSC Publ., 2020) Fernandez, L.; Blanco-Rey, M.; Castrillo-Bodero, R.; Ilyn, M.; Ali, K.; Turco, E.; Corso, M.; Ormaza, M.; Gargiani, P.; Valbuena, M.A.; Mugarza, A.; Moras, P.; Sheverdyaeva, P.M.; Kundu, Asish K.; Jugovac, M.; Laubschat, C.; Ortega, J.E.; Schiller, F.
    One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.
  • Item
    All-t2g electronic orbital reconstruction of monoclinic MoO2 battery material
    (Basel : MDPI, 2020) Craco, Luis; Leoni, Stefano
    Motivated by experiments, we undertake an investigation of electronic structure reconstruction and its link to electrodynamic responses of monoclinic MoO2. Using a combination of LDA band structure with DMFT for the subspace defined by the physically most relevant Mo 4d-bands, we unearth the importance of multi-orbital electron interactions to MoO2 parent compound. Supported by a microscopic description of quantum capacity we identify the implications of many-particle orbital reconstruction to understanding and evaluating voltage-capacity profiles intrinsic to MoO2 battery material. Therein, we underline the importance of the dielectric function and optical conductivity in the characterisation of existing and candidate battery materials.
  • Item
    Waste Recycling in Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2020) Bahrami, Amin; Schierning, Gabi; Nielsch, Kornelius
    Thermoelectric (TE) technology enables the efficient conversion of waste heat generated in homes, transport, and industry into promptly accessible electrical energy. Such technology is thus finding increasing applications given the focus on alternative sources of energy. However, the synthesis of TE materials relies on costly and scarce elements, which are also environmentally damaging to extract. Moreover, spent TE modules lead to a waste of resources and cause severe pollution. To address these issues, many laboratory studies have explored the synthesis of TE materials using wastes and the recovery of scarce elements from spent modules, e.g., utilization of Si slurry as starting materials, development of biodegradable TE papers, and bacterial recovery and recycling of tellurium from spent TE modules. Yet, the outcomes of such work have not triggered sustainable industrial practices to the extent needed. This paper provides a systematic overview of the state of the art with a view to uncovering the opportunities and challenges for expanded application. Based on this overview, it explores a framework for synthesizing TE materials from waste sources with efficiencies comparable to those made from raw materials.
  • Item
    In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
    (Weinheim : Wiley-VCH, 2020) Zhao, Liang; Ta, Huy Q.; Mendes, Rafael G.; Bachmatiuk, Alicja; Rummeli, Mark H.
    Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single-atom-thick two-dimensional (2D) metals exist. This work shows single-atom-thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single-atom-thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Silicon-Based Integrated Label-Free Optofluidic Biosensors: Latest Advances and Roadmap
    (Weinheim : Wiley, 2020) Wang, Jiawei; Medina Sanchez, Mariana; Yin, Yin; Herzer, Raffael; Ma, Libo; Schmidt, Oliver G.
    By virtue of the well-developed micro- and nanofabrication technologies and rapidly progressing surface functionalization strategies, silicon-based devices have been widely recognized as a highly promising platform for the next-generation lab-on-a-chip bioanalytical systems with a great potential for point-of-care medical diagnostics. Herein, an overview of the latest advances in silicon-based integrated optofluidic label-free biosensing technologies relying on the efficient interactions between the evanescent light field at the functionalized surface and specifically bound analytes is presented. State-of-the-art technologies demonstrating label-free evanescent wave-based biomarker detection mainly encompass three device configurations, including on-chip waveguide-based interferometers, microring resonators, and photonic-crystal-based cavities. Moreover, up-to-date strategies for elevating the sensitivities and also simplifying the sensing processes are discussed. Emerging laboratory prototypes with advanced integration and packaging schemes incorporating automatic microfluidic components or on-chip optoelectronic devices lead to one significant step forward in real applications of decentralized diagnostics. Besides, particular attention is paid to currently commercialized label-free optical bioanalytical models on the market. Finally, the prospects are elaborated with several research routes toward chip-scale, low-cost, highly sensitive, multi-functional, and user-friendly bioanalytical systems benefiting to global healthcare. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Heat capacity signature of frustrated trimerons in magnetite
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Sahling, S.; Lorenzo, J.E.; Remenyi, G.; Marin, C.; Katkov, V.L.; Osipov, V.A.
    Recently it has been proposed that the long-range electronic order formed by trimerons in magnetite should be frustrated due to the great degeneracy of arrangements linking trimerons. This result has important consequences as charge ordering from the condensed minority band electrons leads to a complex 3D antiferro orbital order pattern. Further more, the corner sharing tetrahedra structure of spinel B-sites supports frustration for antiferromagnetic alignments. Therefore frustration due to competing interactions will itself induce disorder and very likely frustration in the spin orientations. Here we present very low temperature specific heat data that show two deviations to the magnons and phonons contributions, that we analyze in terms of Schottky-type anomalies. The first one is associated with the thermal activation across both ferroelastic twin and ferromagnetic anti-phase domains. The second Schottky-type anomaly displays an inverse (1/H) field dependence which is a direct indication of the disordered glassy network with macroscopically degenerated singular ground states. © 2020, The Author(s).