Search Results

Now showing 1 - 10 of 37
  • Item
    Enlightening Materials with Photoswitches
    (Weinheim : Wiley-VCH, 2020) Goulet-Hanssens, Alexis; Eisenreich, Fabian; Hecht, Stefan
    Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Pros and Cons : Supramolecular or Macromolecular : What Is Best for Functional Hydrogels with Advanced Properties?
    (Weinheim : Wiley-VCH, 2020) Eelkema, Rienk; Pich, Andrij
    Hydrogels are fascinating soft materials with unique properties. Many biological systems are based on hydrogel-like structures, underlining their versatility and relevance. The properties of hydrogels strongly depend on the structure of the building blocks they are composed of, as well as the nature of interactions between them in the network structure. Herein, gel networks made by supramolecular interactions are compared to covalent macromolecular networks, drawing conclusions about their performance and application as responsive materials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb2
    (Weinheim : Wiley-VCH, 2020) Kumar, Nitesh; Yao, Mengyu; Nayak, Jayita; Vergniory, Maia G.; Bannies, Jörn; Wang, Zhijun; Schröter, Niels B.M.; Strocov, Vladimir N.; Müchler, Lukas; Shi, Wujun; Rienks, Emile D.L.; Mañes, J.L.; Shekhar, Chandra; Parkin, Stuart S.P.; Fink, Jörg; Fecher, Gerhard H.; Sun, Yan; Bernevig, B. Andrei; Felser, Claudia
    Multifold degenerate points in the electronic structure of metals lead to exotic behaviors. These range from twofold and fourfold degenerate Weyl and Dirac points, respectively, to sixfold and eightfold degenerate points that are predicted to give rise, under modest magnetic fields or strain, to topological semimetallic behaviors. The present study shows that the nonsymmorphic compound PdSb2 hosts six-component fermions or sextuplets. Using angle-resolved photoemission spectroscopy, crossing points formed by three twofold degenerate parabolic bands are directly observed at the corner of the Brillouin zone. The group theory analysis proves that under weak spin–orbit interaction, a band inversion occurs. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Lumped Parameter Model for Silicon Crystal Growth from Granulate Crucible
    (Weinheim : Wiley-VCH, 2020) Lorenz-Meyer, M. Nicolai L.; Menzel, Robert; Dadzis, Kaspars; Nikiforova, Angelina; Riemann, Helge
    In the present paper, a lumped parameter model for the novel Silicon Granulate Crucible (SiGC) method is proposed, which is the basis for a future model-based control system for the process. The model is analytically deduced based on the hydromechanical, geometrical, and thermal conditions of the process. Experiments are conducted to identify unknown model parameters and to validate the model. The physical consistency of the model is verified using simulation studies and a prediction error of below 2% is reached. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    The Impact of AlN Templates on Strain Relaxation Mechanisms during the MOVPE Growth of UVB-LED Structures
    (Weinheim : Wiley-VCH, 2020) Knauer, Arne; Mogilatenko, Anna; Weinrich, Jonas; Hagedorn, Sylvia; Walde, Sebastian; Kolbe, Tim; Cancellara, Leonardo; Weyers, Markus
    Strain relaxation mechanisms in AlGaN based light emitting diodes emitting in the ultraviolet B spectral range (UVB-LEDs) grown on different AlN/sapphire templates are analyzed by combining in situ reflectivity and curvature data with transmission electron microscopy. In particular, the impact of dislocation density, surface morphology, and lattice constant of the AlN/sapphire templates is studied. For nonannealed AlN/templates with threading dislocation densities (TDDs) of 4 × 109 and 3 × 109 cm−2 and different surface morphologies strain relaxation takes place mostly by conventional ways, such as inclination of threading dislocation lines and formation of horizontal dislocation bands. In contrast, a TDD reduction down to 1 × 109 cm−2 as well as a reduction of the lattice constant of high temperature annealed AlN template leads to drastic changes in the structure of subsequently grown AlGaN layers, e.g., to transformation to helical dislocations and enhanced surface enlargement by formation of macrofacets. For the growth of strongly compressively strained AlGaN layers for UVB-LEDs the relaxation mechanism is strongly influenced by the absolute values of TDD and the lattice constant of the AlN templates and is less influenced by their surface morphology.
  • Item
    Nonclassical Recrystallization
    (Weinheim : Wiley-VCH, 2020) Brunner, Julian; Maier, Britta; Rosenberg, Rose; Sturm, Sebastian; Cölfen, Helmut; Sturm, Elena V.
    Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high-resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so-far unsurpassed size-distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size- and shape-selective, since mesocrystals show both long-range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Carbon Monoxide Coupling Reactions: A New Concept for the Formation of Hexahydroxybenzene
    (Weinheim : Wiley-VCH, 2020) Rosenthal, Uwe
    For linear and cyclic coupling reactions of CO, among other products, the formation of the hexapotassium salt of hexahydroxybenzene is of particular interesting. The interaction of metallic potassium and CO offers, via the assumed K[OC≡CO]K as the result of several carbon monoxide coupling reactions, the formation of C6(OK)6 among other products. To date, only speculations exist about the reaction pathway for these products, which were first described by Liebig in 1834. A novel concept is suggested here, which consists of the single steps (i) reductive coupling of CO, (ii) formation of dihetero-metallacyclopentynes (cis-2,5-diheterobutatriene as formal ethylenedione O=C=C=O complexes), (iii) formation of its dinuclear 1-metalla-2,5-dioxo-cyclopentyne complexes by external coordination of the triple bond, (iv) insertion of CO into the M−C bond of the formed metallacyclopropene, and (v) the reductive elimination of C6(OK)6. The novel aspect of this concept is the formation of dihetero-metallacyclopentynes (in analogy to the well characterized all-C-metallacyclopentynes), which have not been considered in the mechanism of reductive CO coupling reactions. It is expected that the presence of transition-metal impurities would promote the reaction. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Cyclometalated Ruthenium Pincer Complexes as Catalysts for the α-Alkylation of Ketones with Alcohols
    (Weinheim : Wiley-VCH, 2020) Piehl, Patrick; Amuso, Roberta; Alberico, Elisabetta; Junge, Henrik; Gabriele, Bartolo; Neumann, Helfried; Beller, Matthias
    Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N-bound ligands have been prepared and fully characterized for the first time. By replacing CO and H− as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α-alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Mechanistic Insights into the Triplet Sensitized Photochromism of Diarylethenes
    (Weinheim : Wiley-VCH, 2020) Fredrich, Sebastian; Morack, Tobias; Sliwa, Michel; Hecht, Stefan
    Operating photoswitchable molecules repetitively and reliably is crucial for most of their applications, in particular in (opto)electronic devices, and related to reversibility and fatigue resistance, which both critically depend on the photoisomerization mechanism defined by the substitution pattern. Two diarylethene photoswitches bearing biacetyl triplet sensitizers either at the periphery or at the core were investigated using both stationary as well as transient UV/Vis absorption spectroscopy ranging from the femtosecond to the microsecond time scale. The diarylethene with two biacetyl moieties at the periphery is switching predominantly from the triplet excited state, giving rise to an enhanced fatigue resistance. In contrast, the diarylethene bearing one diketone at the photoreactive inner carbon atom cyclizes from the singlet excited state and shows significantly higher quantum yields for both cyclization and cycloreversion. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Ruthenium-Catalyzed Site-Selective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles
    (Weinheim : Wiley-VCH, 2020) Li, Yang; Neumann, Helfried; Beller, Matthias
    Introducing (per)fluoroalkyl groups into arenes continues to be an interesting, but challenging area in organofluorine chemistry. We herein report an ortho-selective C−H perfluoroalkylation including trifluoromethylations of anilines and indoles without the need of protecting groups using RfI and RfBr as commercially available reagents. The availability and price of the starting materials and the inherent selectivity make this novel methodology attractive for the synthesis of diverse (per)fluoroalkylated building blocks, for example, for bioactive compounds and materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.