Search Results

Now showing 1 - 5 of 5
  • Item
    Sperm Micromotors for Cargo Delivery through Flowing Blood
    (Washington, DC : American Chemical Society, 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Maitz, Manfred F.; Werner, Carsten; Schmidt, Oliver G.
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
  • Item
    Medical Imaging of Microrobots: Toward In Vivo Applications
    (Washington, DC : American Chemical Society, 2020) Aziz, Azaam; Pane, Stefano; Iacovacci, Veronica; Koukourakis, Nektarios; Czarske, Jürgen; Menciassi, Arianna; Medina-Sánchez, Mariana; Schmidt, Oliver G
    Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
  • Item
    The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators
    (Cambridge : RSC, 2020) Freund, Pascal; Senkovska, Irena; Zheng, Bin; Bon, Volodymyr; Krause, Beate; Maurin, Guillaume; Kaskel, Stefan
    We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.
  • Item
    Compacting frequent star patterns in RDF graphs
    (Dordrecht : Springer Science + Business Media B.V, 2020) Karim, Farah; Vidal, Maria-Esther; Auer, Sören
    Knowledge graphs have become a popular formalism for representing entities and their properties using a graph data model, e.g., the Resource Description Framework (RDF). An RDF graph comprises entities of the same type connected to objects or other entities using labeled edges annotated with properties. RDF graphs usually contain entities that share the same objects in a certain group of properties, i.e., they match star patterns composed of these properties and objects. In case the number of these entities or properties in these star patterns is large, the size of the RDF graph and query processing are negatively impacted; we refer these star patterns as frequent star patterns. We address the problem of identifying frequent star patterns in RDF graphs and devise the concept of factorized RDF graphs, which denote compact representations of RDF graphs where the number of frequent star patterns is minimized. We also develop computational methods to identify frequent star patterns and generate a factorized RDF graph, where compact RDF molecules replace frequent star patterns. A compact RDF molecule of a frequent star pattern denotes an RDF subgraph that instantiates the corresponding star pattern. Instead of having all the entities matching the original frequent star pattern, a surrogate entity is added and related to the properties of the frequent star pattern; it is linked to the entities that originally match the frequent star pattern. Since the edges between the entities and the objects in the frequent star pattern are replaced by edges between these entities and the surrogate entity of the compact RDF molecule, the size of the RDF graph is reduced. We evaluate the performance of our factorization techniques on several RDF graph benchmarks and compare with a baseline built on top gSpan, a state-of-the-art algorithm to detect frequent patterns. The outcomes evidence the efficiency of proposed approach and show that our techniques are able to reduce execution time of the baseline approach in at least three orders of magnitude. Additionally, RDF graph size can be reduced by up to 66.56% while data represented in the original RDF graph is preserved.
  • Item
    Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2020) Avid, Arezoo; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Ghaffari, Mehdi; Krause, Beate; Pötschke, Petra
    Multiwalled carbon nanotubes (MWCNTs) were modified by an organo-silane in order to improve their dispersion state and stability in paraffin wax. A family of paraffin-based phase change material (PCM) composites filled with MWCNTs was prepared with different loadings (0, 0.1, 0.5, and 1 wt%) of pristine MWCNTs and organo-silane modified MWCNTs (Si-MWCNT). Structural analyses were performed by means of Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and rheological studies using temperature sweeps. Moreover, phase change transition temperatures and heat of fusion as well as thermal and electrical conductivities of the developed PCM nanocomposites were determined. The SEM micrographs and FTIR absorption bands appearing at approximately 1038 and 1112 cm−1 confirmed the silane modification. Differential scanning calorimetery (DSC) results indicate that the presence of Si-MWCNTs leads to slightly favorable enhancement in the energy storage capacity at the maximum loading. It was also shown that the thermal conductivity of the PCM nanocomposites, in both solid and liquid phases, increased with increasing the MWCNT content independent of the kind of MWCNTs by up to about 30% at the maximum loading of MWCNTs. In addition, the modification of MWCNTs made the samples completely electrically nonconductive, and the electrical surface resistivity of the PCMs containing pristine MWCNTs decreased with increasing MWCNTs loading. Furthermore, the rheological assessment under consecutive cyclic phase change demonstrated that the samples containing modified MWCNTs are more stable compared to the PCM containing pristine MWCNTs. © 2019 Wiley