Search Results

Now showing 1 - 10 of 84
  • Item
    Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
    (Basel : MDPI, 2020) Herppich, Werner B.; Gusovius, Hans-Jörg; Flemming, Inken; Drastig, Katrin
    Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Effectivity and Cost Efficiency of a Tax on Nitrogen Fertilizer to Reduce GHG Emissions from Agriculture
    (Basel : MDPI AG, 2020) Meyer-Aurich, Andreas; Nadi Karatay, Yusuf; Nausediene, Ausra; Kirschke, Dieter
    The use of nitrogen (N) fertilizer substantially contributes to greenhouse gas (GHG) emissions due to N2O emissions from agricultural soils and energy-intensive fertilizer manufacturing. Thus, a reduction of mineral N fertilizer use can contribute to reduced GHG emissions. Fertilizer tax is a potential instrument to provide incentives to apply less fertilizer and contribute to the mitigation of GHG emissions. This study provides model results based on a production function analysis from field experiments in Brandenburg and Schleswig-Holstein, with respect to risk aversion by calculating certainty equivalents for different levels of risk aversion. The model results were used to identify effective and cost-efficient options considering farmers’ risk aversion to reduce N fertilizer, and to compare the potential and cost of GHG mitigation with different N fertilizer tax schemes. The results show that moderate N tax levels are effective in reducing N fertilizer levels, and thus, in curbing GHG emissions at costs below 100 €/t CO2eq for rye, barley and canola. However, in wheat production, N tax has limited effects on economically optimal N use due to the effects of N fertilizer on crop quality, which affect the sale prices of wheat. The findings indicate that the level of risk aversion does not have a consistent impact on the reduction of N fertilizer with a tax, even though the level of N fertilizer use is generally lower for risk-averse agents. The differences in N fertilizer response might have an impact on the relative advantage of different crops, which should be taken into account for an effective implementation of a tax on N fertilizer.
  • Item
    Kaskadennutzung von Lignocellulose : LX-Verfahren trifft auf B. coagulans
    (Heidelberg : Spektrum, 2020) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    Investigating alternatives for petrobased substrates, lignocellulose is an interesting yet complex feedstock that offers various possibilities for the design of new and sustainable chemical routes. The novel energy-saving LX-pretreatment was combined with thermophilic Bacillus coagulans. By this, corn straw was used in an innovative cascade obtaining biogas, lignin as well as polymerisable L-(+)-lactic acid of over 99 percents optical purity. © 2020, Die Autoren.
  • Item
    Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust
    (Basel : MDPI AG, 2020) Pecenka, Ralf; Lenz, Hannes; Jekayinfa, Simeon Olatayo; Hoffmann, Thomas
    The cultivation of fast-growing wood (e.g., poplar, willow or black locust) in short rotation coppices and agroforestry systems presents an opportunity for producing biomass sustainably in the agricultural sector. Cost-efficient agricultural wood production requires the availability of high-performance machinery and methods with which high-quality wood chips can be produced at low cost. It is known from harvesting short rotation coppices in practice that both the wood chip quality and the performance of the harvesting machinery depend on a variety of factors (e.g., harvesting method, weather conditions, tree species). That is why this study examines in detail the influence of the tree species (different varieties of poplar, willow, black locust) and the wood condition (fresh, stored or dried, frozen) on the specific energy demand for comminution in a stationary drum chipper and on the particle size distribution of the wood chips produced. For all the tree species examined, the chipping of dried as well as frozen stems was connected with a significant increase in the specific energy demand for comminution. An increase of 31% has been measured if poplar stems are chipped in frozen conditions (max. 6.31 kWh t−1). Drying led to an increase of 59% for dried willow stems (max. 6.67 kWh t−1). Drying and frost had also an influence on the size and quality of the wood chips, but no globally significant connection could be established for the examined tree varieties.
  • Item
    Using SPOT-7 for Nitrogen Fertilizer Management in Oil Palm
    (Basel : MDPI AG, 2020) Yadegari, Mohammad; Shamshiri, Redmond R.; Shariff, Abdul Rashid Mohamed; Balasundram, Siva K.; Mahns, Benjamin
    Environmental concerns are growing about excessive applying nitrogen (N) fertilizers, especially in oil palm. Some conventional methods which are used to assess the amount of nutrient in oil palm are time-consuming, expensive, and involve frond destruction. Remote sensing as a non-destructive, affordable, and efficient method is widely used to detect the concentration of chlorophyll (Chl) from canopy plants using several vegetation indices (VIs) because there is an influential relation between the concentration of N in the leaves and canopy Chl content. The objectives of this research are to (i) evaluate and compare the performance of various vegetation indices (VIs) for measuring N status in oil palm canopy using SPOT-7 imagery (AIRBUS Defence & Space, Ottobrunn, Germany) to (ii) develop a regression formula that can predict the N content using satellite data to (iii) assess the regression formula performance on testing datasets by testing the coefficient of determination between the predicted and measured N contents. SPOT-7 was acquired in a 6-ha oil palm planted area in Pahang, Malaysia. To predict N content, 28 VIs based on the spectral range of SPOT-7 satellite images were evaluated. Several regression models were applied to determine the highest coefficient of determination between VIs and actual N content from leaf sampling. The modified soil-adjusted vegetation index (MSAVI) generated the highest coefficient of determination (R2 = 0.93). MTVI1 and triangular VI had the highest second and third coefficient of determination with N content (R2 = 0.926 and 0.923, respectively). The classification accuracy assessment of the developed model was evaluated using several statistical parameters such as the independent t-test, and p-value. The accuracy assessment of the developed model was more than 77%.
  • Item
    Base Neutralizing Capacity of Agricultural Soils in a Quaternary Landscape of North-East Germany and Its Relationship to Best Management Practices in Lime Requirement Determination
    (Basel : MDPI AG, 2020) Vogel, Sebastian; Bönecke, Eric; Kling, Charlotte; Kramer, Eckart; Lück, Katrin; Nagel, Anne; Philipp, Golo; Rühlmann, Jörg; Schröter, Ingmar; Gebbers, Robin
    Despite being a natural soil-forming process, soil acidification is a major agronomic challenge under humid climate conditions, as soil acidity influences several yield-relevant soil properties. It can be counterbalanced by the regular application of agricultural lime to maintain or re-establish soil fertility and to optimize plant growth and yield. To avoid underdose as well as overdose, lime rates need to be calculated carefully. The lime rate should be determined by the optimum soil pH (target pH) and the response of the soil to lime, which is described by the base neutralizing capacity (BNC). Several methods exist to determine the lime requirement (LR) to raise the soil pH to its optimum. They range from extremely time-consuming equilibration methods, which mimic the natural processes in the soil, to quick tests, which rely on some approximations and are designed to provide farmers with timely and cost-efficient data. Due to the higher analytical efforts, only limited information is available on the real BNC of particular soils. In the present paper, we report the BNC of 420 topsoil samples from Central Europe (north-east Germany), developed on sediments from the last ice age 10,000 years ago under Holocene conditions. These soils are predominantly sandy and low in humus, but they exhibit a huge spatial variability in soil properties on a small scale. The BNC was determined by adding various concentrations of Ca(OH)2 and fitting an exponential model to derive a titration curve for each sample. The coefficients of the BNC titration curve were well correlated with soil properties affecting soil acidity and pH buffer capacity, i.e., pH, soil texture and soil organic matter (SOM). From the BNC model, the LRs (LRBNC) were derived and compared with LRVDLUFA based on the standard protocol in Germany as established by the Association of German Agricultural Analytic and Research Institutes (VDLUFA). The LRBNC and LRVDLUFA correlated well but the LRVDLUFA were generally by approximately one order of magnitude higher. This is partly due to the VDLUFA concept to recommend a maintenance or conservation liming, even though the pH value is in the optimum range, to keep it there until the next lime application during the following rotation. Furthermore, the VDLUFA method was primarily developed from field experiments where natural soil acidification and management practices depressed the effect of lime treatment. The BNC method, on the other hand, is solely based on laboratory analysis with standardized soil samples. This indicates the demand for further research to develop a sound scientific algorithm that complements LRBNC with realistic values of annual Ca2+ removal and acidification by natural processes and N fertilization.
  • Item
    Carbon Budget of an Agroforestry System after Being Converted from a Poplar Short Rotation Coppice
    (Basel : MDPI, 2020) Pecchioni, Giovanni; Bosco, Simona; Volpi, Iride; Mantino, Alberto; Dragoni, Federico; Giannini, Vittoria; Tozzini, Cristiano; Mele, Marcello; Ragaglini, Giorgio
    Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses.
  • Item
    Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms
    (Amsterdam : Elsevier, 2020) Bakalis, Serafim; Valdramidis, Vasilis P.; Argyropoulos, Dimitrios; Ahrne, Lilia; Chen, Jianshe; Cullen, P.J.; Cummins, Enda; Datta, Ashim K.; Emmanouilidis, Christos; Foster, Tim; Fryer, Peter J.; Gouseti, Ourania; Hospido, Almudena; Knoerzer, Kai; LeBail, Alain; Marangoni, Alejandro G.; Rao, Pingfan; Schlüter, Oliver K.; Taoukis, Petros; Xanthakis, Epameinondas; Van Impe, Jan F.M.
    [no abstract available]
  • Item
    Limited life cycle andcost assessment for the bioconversion of lignin‐derived aromatics into adipic acid
    (New York, NY [u.a.] : Wiley, 2020) van Duuren, Jozef B.J.H.; de Wild, Paul J.; Starck, Sören; Bradtmöller, Christian; Selzer, Mirjam; Mehlmann, Kerstin; Schneider, Roland; Kohlstedt, Michael; Poblete‐Castr, Ignacio; Stolzenberger, Jessica; Barton, Nadja; Fritz, Michel; Scholl, Stephan; Venus, Joachim; Wittmann, Christoph
    Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. © 2020 Wiley Periodicals, Inc.