Search Results

Now showing 1 - 3 of 3
  • Item
    783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power
    (Washington, DC : The Optical Society, 2021) Sumpf, Bernd; Theurer, Lara Sophie; Maiwald, Martin; Müller, André; Maaßdorf, André; Fricke, Jörg; Ressel, Peter; Tränkle, Günther
    Wavelength stabilized distributed Bragg reflector (DBR) tapered diode lasers at 783 nm will be presented. The devices are based on GaAsP single quantum wells embedded in a large optical cavity leading to a vertical far field angle of about 29◦ (full width at half maximum). The 3-inch (7.62 cm) wafers are grown using metalorganic vapor phase epitaxy. In a full wafer process, 4 mm long DBR tapered lasers are manufactured. The devices consist of a 500 µm long 10th order surface DBR grating that acts as rear side mirror. After that, a 1 mm long ridge waveguide section is realized for lateral confinement, which is connected to a 2.5 mm long flared section having a full taper angle of 6◦. At an injection current of 8 A, a maximum output power of about 7 W is measured. At output powers up to 6 W, the measured emission width limited by the resolution of the spectrometer is smaller than 19 pm. Measured at 1/e2 level at this output power, the lateral beam waist width is 11.5 µm, the lateral far field angle 12.5◦, and the lateral beam parameter M2 2.5. The respective parameters measured using the second moments are 31 µm, 15.2◦, and 8.3. 70% of the emitted power is originated from the central lobe. © 2021 Optical Society of America
  • Item
    Sub-cycle valleytronics: control of valley polarization using few-cycle linearly polarized pulses
    (Washington, DC : OSA, 2021) Jiménez-Galán, Álvaro; Silva, Rui E. F.; Smirnova, Olga; Ivanov, Misha
    So far, it has been assumed that selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has to rely on using circularly polarized fields. We theoretically demonstrate a way to control the valley excitation in hexagonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier–envelope phase. The valley polarization is mapped onto the strength of the perpendicular harmonic signal of a weak, linearly polarized pulse, which allows to read this information all-optically without destroying the valley state and without relying on the Berry curvature, making our approach potentially applicable to inversion-symmetric materials. We show applicability of this method to hexagonal boron nitride and MoS2.
  • Item
    Two-color two-dimensional terahertz spectroscopy: A new approach for exploring even-order nonlinearities in the nonperturbative regime
    (Melville, NY : American Institute of Physics, 2021) Woerner, Michael; Ghalgaoui, Ahmed; Reimann, Klaus; Elsaesser, Thomas
    Nonlinear two-dimensional terahertz (2D-THz) spectroscopy at frequencies of the emitted THz signal different from the driving frequencies allows for exploring the regime of (off-)resonant even-order nonlinearities in condensed matter. To demonstrate the potential of this method, we study two phenomena in the nonlinear THz response of bulk GaAs: (i) The nonlinear THz response to a pair of femtosecond near-infrared pulses unravels novel fourth- and sixth-order contributions involving interband shift currents, Raman-like excitations of transverse-optical phonon and intervalence-band coherences. (ii) Transient interband tunneling of electrons driven by ultrashort mid-infrared pulses can be effectively controlled by a low-frequency THz field with amplitudes below 50 kV/cm. The THz field controls the electron–hole separation modifying decoherence and the irreversibility of carrier generation.