Search Results

Now showing 1 - 8 of 8
  • Item
    Comprehensive Assessment of the Dynamics of Banana Chilling Injury by Advanced Optical Techniques
    (Basel : MDPI, 2021) Herppich, Werner B.; Zsom, Tamás
    Green‐ripe banana fruit are sensitive to chilling injury (CI) and, thus, prone to postharvest quality losses. Early detection of CI facilitates quality maintenance and extends shelf life. CI affects all metabolic levels, with membranes and, consequently, photosynthesis being primary targets. Optical techniques such as chlorophyll a fluorescence analysis (CFA) and spectroscopy are promising tools to evaluate CI effects in photosynthetically active produce. Results obtained on bananas are, however, largely equivocal. This results from the lack of a rigorous evaluation of chilling impacts on the various aspects of photosynthesis. Continuous and modulated CFA and imaging (CFI), and VIS remission spectroscopy (VRS) were concomitantly applied to noninvasively and comprehensively monitor photosynthetically relevant effects of low temperatures (5 °C, 10 °C, 11.5 °C and 13 °C). Detailed analyses of chilling‐related variations in photosynthetic activity and photoprotection, and in contents of relevant pigments in green‐ripe bananas, helped to better understand the physiological changes occurring during CI, highlighting that distinct CFA and VRS parameters comprehensively reflect various effects of chilling on fruit photosynthesis. They revealed why not all CFA parameters can be applied meaningfully for early detection of chilling effects. This study provides relevant requisites for improving CI monitoring and prediction.
  • Item
    High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds
    (Weinheim : Wiley-VCH, 2021) He, Ran; Zhu, Taishan; Ying, Pingjun; Chen, Jie; Giebeler, Lars; Kühn, Uta; Grossman, Jeffrey C.; Wang, Yumei; Nielsch, Kornelius
    Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m−1 K−1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.
  • Item
    Interface-Dominated Topological Transport in Nanograined Bulk Bi2 Te3
    (Weinheim : Wiley-VCH, 2021) Izadi, Sepideh; Han, Jeong Woo; Salloum, Sarah; Wolff, Ulrike; Schnatmann, Lauritz; Asaithambi, Aswin; Matschy, Sebastian; Schlörb, Heike; Reith, Heiko; Perez, Nicolas; Nielsch, Kornelius; Schulz, Stephan; Mittendorff, Martin; Schierning, Gabi
    3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami–Larkin–Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V−1 s−1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2Te3 features surface carrier properties that are of importance for technical applications.
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Impedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis
    (Weinheim : Wiley-VCH, 2021) Egunov, Aleksandr I.; Dou, Zehua; Karnaushenko, Dmitriy D.; Hebenstreit, Franziska; Kretschmann, Nicole; Akgün, Katja; Ziemssen, Tjalf; Karnaushenko, Daniil; Medina-Sánchez, Mariana; Schmidt, Oliver G.
    Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106 Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.
  • Item
    All-Conjugated Polymer Core-Shell and Core-Shell-Shell Particles with Tunable Emission Profiles and White Light Emission
    (Weinheim : Wiley-VCH, 2021) Haehnle, Bastian; Schuster, Philipp A.; Chen, Lisa; Kuehne, Alexander J. C.
    Future applications of conjugated polymer particles (CPP) in medicine, organic photonics, and optoelectronics greatly depend on high performance and precisely adjustable optical properties of the particles. To meet these criteria, current particle systems often combine conjugated polymers with inorganic particles in core-shell geometries, extending the possible optical characteristics of CPP. However, current conjugated polymer particles are restricted to a single polymer phase composed of a distinct polymer or a polymer blend. Here, a synthetic toolbox is presented that enables the synthesis of monodisperse core-shell and core-shell-shell particles, which consist entirely of conjugated polymers but of different types in the core and the shells. Seeded and fed-batch dispersion polymerizations based on Suzuki-Miyaura-type cross-coupling are investigated. The different approaches allow accurate control over the created interface between the conjugated polymer phases and thus also over the energy transfer phenomena between them. This approach opens up completely new synthetic freedom for fine tuning of the optical properties of CPP, enabling, for example, the synthesis of individual white light-emitting particles.
  • Item
    Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation
    (Weinheim : Wiley-VCH, 2021) Wen, Ping; Wang, Xueyi; Moreno, Silvia; Boye, Susanne; Voigt, Dagmar; Voit, Brigitte; Huang, Xin; Appelhans, Dietmar
    The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
  • Item
    Switching Propulsion Mechanisms of Tubular Catalytic Micromotors
    (Weinheim : Wiley-VCH, 2021) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.; Schmidt, Oliver G.
    Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.