Search Results

Now showing 1 - 3 of 3
  • Item
    Deformation characteristics of solid-state benzene as a step towards understanding planetary geology
    ([London] : Nature Publishing Group UK, 2022) Zhang, Wenxin; Zhang, Xuan; Edwards, Bryce W.; Zhong, Lei; Gao, Huajian; Malaska, Michael J.; Hodyss, Robert; Greer, Julia R.
    Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn’s largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan’s dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.
  • Item
    Direct Observation of Shock-Induced Disordering of Enstatite Below the Melting Temperature
    (Hoboken, NJ [u.a.] : Wiley, 2020) Hernandez, J.-A.; Morard, G.; Guarguaglini, M.; Alonso-Mori, R.; Benuzzi-Mounaix, A.; Bolis, R.; Fiquet, G.; Galtier, E.; Gleason, A.E.; Glenzer, S.; Guyot, F.; Ko, B.; Lee, H.J.; Mao, W.L.; Nagler, B.; Ozaki, N.; Schuster, A.K.; Shim, S.H.; Vinci, T.; Ravasio, A.
    We report in situ structural measurements of shock-compressed single crystal orthoenstatite up to 337 Â± 55 GPa on the Hugoniot, obtained by coupling ultrafast X-ray diffraction to laser-driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X-ray diffraction signal at nanosecond timescales at 80 Â± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post-perovskite have been indirectly reported in microsecond-scale plate-impact experiments. Therefore, we interpret the high-pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post-perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments. © 2020. The Authors.
  • Item
    Particle movements provoke avalanche-like compaction in soft colloid filter cakes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Lüken, Arne; Stüwe, Lucas; Lohaus, Johannes; Linkhorst, John; Wessling, Matthias
    During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.