Search Results

Now showing 1 - 10 of 20
  • Item
    Hollow square core fiber sensor for physical parameters measurement
    (Bristol : IOP Publ., 2022) Pereira, Diana; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    The measurement of physical parameters is important in many current applications, since they often rely on these measurands to operate with the due quality and the necessary safety. In this work, a simple and robust optical fiber sensor based on an antiresonant hollow square core fiber (HSCF) is proposed to measure simultaneously temperature, strain, and curvature. The proposed sensor was designed in a transmission configuration where a segment of HSCF, with a 10 mm length, was spliced between two single mode fibers. In this sensor, a cladding modal interference (CMI) and a Mach-Zehnder interference (MZI) are enhanced along with the antiresonance (AR) guidance. All the present mechanisms exhibit different responses towards the physical parameters. For the temperature, sensitivities of 32.8 pm/°C, 18.9 pm/°C, and 15.7 pm/°C were respectively attained for the MZI, AR, and CMI. As for the strain, sensitivities of 0.45 pm/μϵ, -0.93 pm/μϵ, and -2.72 pm/μϵ were acquired for the MZI, AR and CMI respectively. Meanwhile, for the curvature measurements, two regions of analysis were considered. In the first region (0 m-1 - 0.7 m-1) sensitivities of 0.033 nm/m-1, -0.27 nm/m-1, and -2.21 nm/m-1 were achieved, whilst for the second region (0.7 m-1 - 1.5 m-1) sensitivities of 0.067 nm/m-1, -0.63 nm/m-1, and -0.49 nm/m-1 were acquired for the MZI, AR and CMI, respectively.
  • Item
    Electric field determination in transient plasmas: in situ & non-invasive methods
    (Bristol : IOP Publ., 2022) Goldberg, Benjamin M.; Hoder, Tomáš; Brandenburg, Ronny
    One of the primary basic plasma parameters within transient nonequilibrium plasmas is the reduced electric field strength, roughly understood as the ratio of the electrical energy given to the charged species between two collisions. While physical probes have historically been used for electric field measurements, recent advances in high intensity lasers and sensitive detection methods have allowed for non-invasive optical electric field determination in nearly any discharge configuration with time-resolution up to the sub-nanosecond range and sub-millimeter spatial resolution. This topical review serves to highlight several non-invasive methods for in situ electric field strength determination in transient plasmas ranging from high vacuum environments to atmospheric pressure and above. We will discuss the advantages and proper implementation of (i) laser induced fluorescence dip spectroscopy for measurements in low pressure RF discharges, (ii) optical emission spectroscopy based methods for nitrogen, helium or hydrogen containing discharges, (iii) electric field induced coherent Raman scattering, and (iv) electric field induced second harmonic generation. The physical mechanism for each method will be described as well as basic implementation and highlighting recent results.
  • Item
    Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges
    (Bristol : IOP Publ., 2022) Wubs, J.R.; Höft, H.; Kettlitz, M.; Becker, M.M.; Weltmann, K.-D.
    The impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a single-filament arrangement has been investigated in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. The development of the DBDs was recorded by an iCCD and a streak camera system, while fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy. The results demonstrate that breakdown in a smaller gap is characterised by a slower streamer propagation but a significantly higher acceleration. It can therefore be concluded that the proximity of the cathode has a strong impact on the characteristics of the streamer breakdown. However, after the streamer has crossed the gap, the discharge structure in front of the anode was found to be the same independent of the actual gap distance.
  • Item
    Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data
    (Bristol : IOP Publ., 2022) Stankov, M.; Becker, M.M.; Hoder, T.; Loffhagen, D.
    An extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300 K at sub-atmospheric and atmospheric pressures is presented. It considers 23 different species including electrons as well as the ground state atom, an atomic and molecular ion, four excited molecular states, and 15 excited atomic states of argon, where all individual 1s and 2p states (in Paschen notation) are included as a separate species. This 23-species RKM involves 409 collision processes and radiative transitions and recent electron collision cross section data. It is evaluated by means of results of time- and space-dependent fluid modelling of argon discharges and their comparison with measured data for two different dielectric barrier discharge configurations as well as a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with those obtained by use of a previously established 15-species RKM involving only the two lumped 2p states 2p10…5 and 2´p4 … 1. It is found that the 23-species RKM shows generally better agreement with experimental data and provides more options for direct comparison with measurements than the frequently used 15-species RKM.
  • Item
    Verified modeling of a low pressure hydrogen plasma generated by electron cyclotron resonance
    (Bristol : IOP Publ., 2022) Sigeneger, F.; Ellis, J.; Harhausen, J.; Lang, N.; van Helden, J.H.
    A self-consistent fluid model has been successfully developed and employed to model an electron cyclotron resonance driven hydrogen plasma at low pressure. This model has enabled key insights to be made on the mutual interaction of microwave propagation, power density, plasma generation, and species transport at conditions where the critical plasma density is exceeded. The model has been verified by two experimental methods. Good agreement with the ion current density and floating potential—as measured by a retarding energy field analyzer—and excellent agreement with the atomic hydrogen density—as measured by two-photon absorption laser induced fluorescence—enables a high level of confidence in the validity of the simulation.
  • Item
    Hydrogen peroxide production of underwater nanosecond-pulsed streamer discharges with respect to pulse parameters and associated discharge characteristics
    (Bristol : IOP Publ., 2022) Rataj, Raphael; Werneburg, Matthias; Below, Harald; Kolb, Juergen F.
    Abstract Pulsed streamer discharges submerged in water have demonstrated potential in a number of applications. Especially the generation of discharges by short high-voltage pulses in the nanosecond range has been found to offer advantages with respect to efficacies and efficiencies. The exploited plasma chemistry generally relies on the initial production of short-lived species, e.g. hydroxyl radicals. Since the diagnostic of these transient species is not readily possible, a quantification of hydrogen peroxide provides an adequate assessment of underlying reactions. These conceivably depend on the characteristics of the high-voltage pulses, such as pulse duration, pulse amplitude, as well as pulse steepness. A novel electrochemical flow-injection system was used to relate these parameters to hydrogen peroxide concentrations. Accordingly, the accumulated hydrogen peroxide production for streamer discharges ignited in deionized water was investigated for pulse durations of 100 ns and 300 ns, pulse amplitudes between 54 kV and 64 kV, and pulse rise times from 16 ns to 31 ns. An independent control of the individual pulse parameters was enabled by providing the high-voltage pulses with a Blumlein line. Applied voltage, discharge current, optical light emission and time-integrated images were recorded for each individual discharge to determine dissipated energy, inception statistic, discharge expansion and the lifetime of a discharge. Pulse steepness did not affect the hydrogen peroxide production rate, but an increase in amplitude of 10 kV for 100 ns pulses nearly doubled the rate to (0.19 ± 0.01) mol l−1 s−1, which was overall the highest determined rate. The energy efficiency did not change with pulse amplitude, but was sensitive to pulse duration. Notably, production rate and efficiency doubled when the pulse duration decreased from 300 ns to 100 ns, resulting in the best peroxide production efficiency of (9.2 ± 0.9) g kWh−1. The detailed analysis revealed that the hydrogen peroxide production rate could be described by the energy dissipation in a representative single streamer. The production efficiency was affected by the corresponding discharge volume, which was comprised by the collective volume of all filaments. Hence, dissipating more energy in a filament resulted in an increased production rate, while increasing the relative volume of the discharge compared to its propagation time increased the energy efficiency.
  • Item
    Combined toxicity of indirubins with cold physical plasma in skin cancer cells in vitro
    (Bristol : IOP Publ., 2022) Berner, Julia; Bekeschus, Sander
    Cold physical plasma is a partially ionized gas that generates various components identified as potential anticancer compounds. Due to its topical application, cold plasmas are suitable, especially in dermatological applications. We, therefore, tested the cold plasma effects in skin cancer cells in vitro. An atmospheric pressure argon plasma jet was used as the plasma source. The plasma exposure alone reduced the metabolic activity and induced lethal effects in a treatment time-dependent fashion in both cell lines investigated. This was accompanied by executioner caspases 3 and 7, cleavage indicative of apoptosis and reduced cell migration and proliferation. Recent research also indicated roles of novel indirubin derivatives with potent anticancer effects. Three candidates were tested, and reduced metabolic activity and viability in a dose-dependent manner were found. Strikingly, one compound exerted notable synergistic toxicity when combined with plasma in skin cancer cells, which may be promising for future in vivo experiments.
  • Item
    Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: in search of diamonds
    (Bristol : IOP Publ., 2022) Schuster, A.K.; Voigt, K.; Klemmed, B.; Hartley, N.J.; Lütgert, J.; Zhang, M.; Bähtz, C.; Benad, A.; Brabetz, C.; Cowan, T.; Döppner, T.; Erb, D.J.; Eychmüller, A.; Facsko, S.; Falcone, R.W.; Fletcher, L.B.; Frydrych, S.; Ganzenmüller, G.C.; Gericke, D.O.; Glenzer, S.H.; Grenzer, J.; Helbig, U.; Hiermaier, S.; Hübner, R.; Laso Garcia, A.; Lee, H.J.; MacDonald, M.J.; McBride, E.E.; Neumayer, P.; Pak, A.; Pelka, A.; Prencipe, I.; Prosvetov, A.; Rack, A.; Ravasio, A.; Redmer, R.; Reemts, D.; Rödel, M.; Schoelmerich, M.; Schumacher, D.; Tomut, M.; Turner, S.J.; Saunders, A.M.; Sun, P.; Vorberger, J.; Zettl, A.; Kraus, D.
    This work presents first insights into the dynamics of free-surface release clouds from dynamically compressed polystyrene and pyrolytic graphite at pressures up to 200 GPa, where they transform into diamond or lonsdaleite, respectively. These ejecta clouds are released into either vacuum or various types of catcher systems, and are monitored with high-speed recordings (frame rates up to 10 MHz). Molecular dynamics simulations are used to give insights to the rate of diamond preservation throughout the free expansion and the catcher impact process, highlighting the challenges of diamond retrieval. Raman spectroscopy data show graphitic signatures on a catcher plate confirming that the shock-compressed PS is transformed. First electron microscopy analyses of solid catcher plates yield an outstanding number of different spherical-like objects in the size range between ten(s) up to hundreds of nanometres, which are one type of two potential diamond candidates identified. The origin of some objects can unambiguously be assigned, while the history of others remains speculative.
  • Item
    Capillary based hybrid fiber sensor in a balloon-like shape for simultaneous measurement of displacement and temperature
    (Bristol : IOP Publ., 2022) Santos, João P.; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    In this work, a hybrid sensor based on a silica capillary in a balloon-like shape for simultaneous measurement of displacement and temperature is proposed for the first time, to the best of our knowledge. The sensor is fabricated by splicing a segment of a hollow core fiber between two single mode fibers (SMF) and by bending the fiber in a balloon shape with the capillary at the top-center position. In a transmission scheme, the SMF-capillary-SMF configuration excites an antiresonant (AR) guidance and the balloon shape enhances a Mach-Zehnder interferometer (MZI). The different responses of the interferometers to external displacement and temperature variations are conducive to a hybrid application of the sensor for simultaneous measurement of these parameters. Experimental results show that, for a capillary length of 1.2 cm and a balloon length of 4 cm, AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm and twice the sensitivity of AR to temperature, of 28.6 pm/°C. The proposed fiber sensor consists of only one sensing element in one configuration exciting two interferometers at the same time, which makes it of simple fabrication as well as low cost.
  • Item
    The 2022 magneto-optics roadmap
    (Bristol : IOP Publ., 2022-09-28) Kimel, Alexey; Zvezdin, Anatoly; Sharma, Sangeeta; Shallcross, Samuel; de Sousa, Nuno; García-Martín, Antonio; Salvan, Georgeta; Hamrle, Jaroslav; Stejskal, Ondřej; McCord, Jeffrey; Tacchi, Silvia; Carlotti, Giovanni; Gambardella, Pietro; Salis, Gian; Münzenberg, Markus; Schultze, Martin; Temnov, Vasily; Bychkov, Igor V.; Kotov, Leonid N.; Maccaferri, Nicolò; Ignatyeva, Daria; Belotelov, Vladimir; Donnelly, Claire; Rodriguez, Aurelio Hierro; Matsuda, Iwao; Ruchon, Thierry; Fanciulli, Mauro; Sacchi, Maurizio; Du, Chunhui Rita; Wang, Hailong; Armitage, N. Peter; Schubert, Mathias; Darakchieva, Vanya; Liu, Bilu; Huang, Ziyang; Ding, Baofu; Berger, Andreas; Vavassori, Paolo
    Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today's magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.