Search Results

Now showing 1 - 10 of 53
  • Item
    Automated and rapid identification of multidrug resistant Escherichia coli against the lead drugs of acylureidopenicillins, cephalosporins, and fluoroquinolones using specific Raman marker bands
    (Weinheim : Wiley-VCH-Verl., 2020) Götz, Theresa; Dahms, Marcel; Kirchhoff, Johanna; Beleites, Claudia; Glaser, Uwe; Bohnert, Jürgen A.; Pletz, Mathias W.; Popp, Jürgen; Schlattmann, Peter; Neugebauer, Ute
    A Raman-based, strain-independent, semi-automated method is presented that allows the rapid (<3 hours) determination of antibiotic susceptibility of bacterial pathogens isolated from clinical samples. Applying a priori knowledge about the mode of action of the respective antibiotic, we identified characteristic Raman marker bands in the spectrum and calculated batch-wise weighted sum scores from standardized Raman intensity differences between spectra of antibiotic exposed and nonexposed samples of the same strains. The lead substances for three relevant antibiotic classes (fluoroquinolone ciprofloxacin, third-generation cephalosporin cefotaxime, ureidopenicillin piperacillin) against multidrug-resistant Gram-negative bacteria (MRGN) revealed a high sensitivity and specificity for the susceptibility testing of two Escherichia coli laboratory strains and 12 clinical isolates. The method benefits from the parallel incubation of control and treated samples, which reduces the variance due to alterations in cultivation conditions and the standardization of differences between batches leading to long-term comparability of Raman measurements. © 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    What the Phage: a scalable workflow for the identification and analysis of phage sequences
    (Oxford : Oxford University Press, 2022) Marquet, Mike; Hölzer, Martin; Pletz, Mathias W; Viehweger, Adrian; Makarewicz, Oliwia; Ehricht, Ralf; Brandt, Christian
    Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage"(WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).
  • Item
    Phenotypic and Molecular Detection of Biofilm Formation in Staphylococcus aureus Isolated from Different Sources in Algeria
    (Basel : MDPI, 2020) Achek, Rachid; Hotzel, Helmut; Nabi, Ibrahim; Kechida, Souad; Mami, Djamila; Didouh, Nassima; Tomaso, Herbert; Neubauer, Heinrich; Ehricht, Ralf; Monecke, Stefan; El-Adawy, Hosny
    Staphylococcus aureus is an opportunistic bacterium causing a wide variety of diseases. Biofilm formation of Staphylococcus aureus is of primary public and animal health concern. The purposes of the present study were to investigate the ability of Staphylococcus aureus isolated from animals, humans, and food samples to form biofilms and to screen for the presence of biofilmassociated and regulatory genes. In total, 55 Staphylococcus aureus isolated from sheep mastitis cases (n = 28), humans (n = 19), and from food matrices (n = 8) were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ability of Staphylococcus aureus for slime production and biofilm formation was determined quantitatively. A DNA microarray examination was performed to detect adhesion genes (icaACD and biofilmassociated protein gene (bap)), genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), regulatory genes (accessory gene regulator (agr) and staphylococcal accessory regulator (sarA)), and the staphylococcal cassette chromosome mec elements (SCCmec). Out of 55 Staphylococcus aureus isolates, 39 (71.0%) and 23 (41.8%) were producing slime and biofilm, respectively. All Staphylococcus aureus strains isolated from food showed biofilm formation ability. 52.6% of the Staphylococcus aureus strains isolated from sheep with mastitis, and 17.9% of isolates from humans, were able to form a biofilm. Microarray analysis typed the Staphylococcus aureus into 15 clonal complexes. Among all Staphylococcus aureus isolates, four of the human isolates (21.1%) harbored the mecA gene (SCCmec type IV) typed into 2 clonal complexes (CC22-MRSA-IV and CC80-MRSA-IV) and were considered as methicillin-resistant, while two of them were slime-producing. None of the isolates from sheep with mastitis harbored the cna gene which is associated with biofilm production. The fnbB gene was found in 100%, 60% and 40% of biofilm-producing Staphylococcus aureus isolated from food, humans, and sheep with mastitis, respectively. Three agr groups were present and agr group III was predominant with 43.6%, followed by agr group I (38.2%), and agr group II (18.2%). This study revealed the capacity of Staphylococcus aureus isolates to form biofilms and highlighted the genetic background displayed by Staphylococcus aureus isolates from different sources in Algeria. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Nanostructured Silicon Matrix for Materials Engineering
    (Weinheim : Wiley-VCH, 2023) Liu, Poting; Schleusener, Alexander; Zieger, Gabriel; Bochmann, Arne; van Spronsen, Matthijs A.; Sivakov, Vladimir
    Tin-containing layers with different degrees of oxidation are uniformly distributed along the length of silicon nanowires formed by a top-down method by applying metalorganic chemical vapor deposition. The electronic and atomic structure of the obtained layers is investigated by applying nondestructive surface-sensitive X-ray absorption near edge spectroscopy using synchrotron radiation. The results demonstrated, for the first time, a distribution effect of the tin-containing phases in the nanostructured silicon matrix compared to the results obtained for planar structures at the same deposition temperatures. The amount and distribution of tin-containing phases can be effectively varied and controlled by adjusting the geometric parameters (pore diameter and length) of the initial matrix of nanostructured silicon. Due to the occurrence of intense interactions between precursor molecules and decomposition by-products in the nanocapillary, as a consequence of random thermal motion of molecules in the nanocapillary, which leads to additional kinetic energy and formation of reducing agents, resulting in effective reduction of tin-based compounds to a metallic tin state for molecules with the highest penetration depth in the nanostructured silicon matrix. This effect will enable clear control of the phase distributions of functional materials in 3D matrices for a wide range of applications.
  • Item
    Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Stiebing, Clara; Post, Nele; Schindler, Claudia; Göhrig, Bianca; Lux, Harald; Popp, Jürgen; Heutelbeck, Astrid; Schie, Iwan W.
    The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes.
  • Item
    Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Insausti, Sara; Garcia-Porras, Miguel; Torralba, Johana; Morillo, Izaskun; Ramos-Caballero, Ander; de la Arada, Igor; Apellaniz, Beatriz; Caaveiro, Jose M. M.; Carravilla, Pablo; Eggeling, Christian; Rujas, Edurne; Nieva, Jose L.
    Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab–peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab–Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody–membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein–membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.
  • Item
    DNA-Biofunctionalization of CTAC-Capped Gold Nanocubes
    (Basel : MDPI, 2020) Slesiona, Nicole; Thamm, Sophie; Stolle, H. Lisa K.S.; Weißenborn, Viktor; Müller, Philipp; Csáki, Andrea; Fritzsche, Wolfgang
    Clinical diagnostics and disease control are fields that strongly depend on technologies for rapid, sensitive, and selective detection of biological or chemical analytes. Nanoparticles have become an integral part in various biomedical detection devices and nanotherapeutics. An increasing focus is laid on gold nanoparticles as they express less cytotoxicity, high stability, and hold unique optical properties with the ability of signal transduction of biological recognition events with enhanced analytical performance. Strong electromagnetic field enhancements can be found in close proximity to the nanoparticle that can be exploited to enhance signals for e.g., metal-enhanced fluorescence or Raman spectroscopy. Even stronger field enhancements can be achieved with sharp-edged nanoparticles, which are synthesized with the help of facet blocking agents, such as cetyltrimethylammonium bromide/chloride (CTAB/CTAC). However, chemical modification of the nanoparticle surface is necessary to reduce the particle’s cytotoxicity, stabilize it against aggregation, and to bioconjugate it with biomolecules to increase its biocompatibility and/or specificity for analytical applications. Here, a reliable two-step protocol following a ligand exchange with bis (p-sulfonatophenyl) phenyl phosphine (BSPP) as the intermediate capping-agent is demonstrated, which results in the reliable biofunctionalization of CTAC-capped gold nanocubes with thiol-modified DNA. The functionalized nanocubes have been characterized regarding their electric potential, plasmonic properties, and stability against high concentrations of NaCl and MgCl2.
  • Item
    Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop Coating Deposition for Clinical Application
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Huang, Jing; Ali, Nairveen; Quansah, Elsie; Guo, Shuxia; Noutsias, Michel; Meyer-Zedler, Tobias; Bocklitz, Thomas; Popp, Jürgen; Neugebauer, Ute; Ramoji, Anuradha
    In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.
  • Item
    Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies
    (Basel : MDPI, 2021) Podlesnaia, Ekaterina; Csáki, Andrea; Fritzsche, Wolfgang
    The synthesis of shape-anisotropic plasmonic nanoparticles such as gold nanotriangles is of increasing interest. These particles have a high potential for applications due to their notable optical properties. A key challenge of the synthesis is usually the low reproducibility. Even the optimized seed-based methods often lack in the synthesis yield or are labor- and time-consuming. In this work, a seed-mediated synthesis with high reproducibility is replicated in order to determine the necessary reaction time for each step. Online monitoring of the reaction mixtures by UV–VIS spectroscopy is used as a powerful tool to track the evolution of the synthesis. The kinetics of the individual stages is elucidated by real-time investigations. As a consequence, the complete synthesis could be optimized and can now be realized in a single day instead of three without any loss in the resulting sample quality.
  • Item
    Phylodynamic signatures in the emergence of community-associated MRSA
    (Washington, DC : National Acad. of Sciences, 2022) Steinig, Eike; Aglua, Izzard; Duchene, Sebastian; Meehan, Michael T.; Yoannes, Mition; Firth, Cadhla; Jaworski, Jan; Drekore, Jimmy; Urakoko, Bohu; Poka, Harry; Wurr, Clive; Ebos, Eri; Nangen, David; Müller, Elke; Mulvey, Peter; Jackson, Charlene; Blomfeldt, Anita; Aamot, Hege Vangstein; Laman, Moses; Manning, Laurens; Earls, Megan; Coleman, David C.; Greenhill, Andrew; Ford, Rebecca; Stegger, Marc; Syed, Muhammad Ali; Jamil, Bushra; Monecke, Stefan; Ehricht, Ralf; Smith, Simon; Pomat, William; Horwood, Paul; Tong, Steven Y. C.; McBryde, Emma
    Community-associated, methicillin-resistant Staphylococcus aureus (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (Re) and sustained transmission (Re > 1) coincided with spread of progenitor methicillin-susceptible S. aureus (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated S. aureus lineages from America, Asia, Australasia, and Europe. Surges in Re were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.