Search Results

Now showing 1 - 3 of 3
  • Item
    Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent
    (Springfield, MO : AIMS Press, 2021) Khalil, Tayyaba; Asad, Saeed A.; Khubaib, Nusaiba; Baig, Ayesha; Atif, Salman; Umar, Muhammad; Kropp, Jürgen P.; Pradhan, Prajal; Baig, Sofia
    The impacts of climate change are projected to become more intense and frequent. One of the indirect impacts of climate change is food insecurity. Agriculture in Pakistan, measured fourth best in the world, is already experiencing visible adverse impacts of climate change. Among many other food sources, potato crop remains one of the food security crops for developing nations. Potatoes are widely cultivated in Pakistan. To assess the impact of climate change on potato crop in Pakistan, it is imperative to analyze its distribution under future climate change scenarios using Species Distribution Models (SDMs). Maximum Entropy Model is used in this study to predict the spatial distribution of Potato in 2070 using two CMIP5 models for two climate change scenarios (RCP 4.5 and RCP 8.5). 19 Bioclimatic variables are incorporated along with other contributing variables like soil type, elevation and irrigation. The results indicate slight decrease in the suitable area for potato growth in RCP 4.5 and drastic decrease in suitable area in RCP 8.5 for both models. The performance evaluation of the model is based on AUC. AUC value of 0.85 suggests the fitness of the model and thus, it is applicable to predict the suitable climate for potato production in Pakistan. Sustainable potato cultivation is needed to increase productivity in developing countries while promoting better resource management and optimization.
  • Item
    Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms
    (Amsterdam : Elsevier, 2020) Bakalis, Serafim; Valdramidis, Vasilis P.; Argyropoulos, Dimitrios; Ahrne, Lilia; Chen, Jianshe; Cullen, P.J.; Cummins, Enda; Datta, Ashim K.; Emmanouilidis, Christos; Foster, Tim; Fryer, Peter J.; Gouseti, Ourania; Hospido, Almudena; Knoerzer, Kai; LeBail, Alain; Marangoni, Alejandro G.; Rao, Pingfan; Schlüter, Oliver K.; Taoukis, Petros; Xanthakis, Epameinondas; Van Impe, Jan F.M.
    [no abstract available]
  • Item
    Agriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All
    (Lausanne : Frontiers Media, 2020) Jägermeyr, Jonas
    A sustainable and just future, envisioned by the UN's 2030 Agenda for Sustainable Development, puts agricultural systems under a heavy strain. The century-old quandary to provide ever-growing human populations with sufficient food takes on a new dimension with the recognition of environmental limits for agricultural resource use. To highlight challenges and opportunities toward sustainable food security in the twenty first century, this perspective paper provides a historical account of the escalating pressures on agriculture and freshwater resources alike, supported by new quantitative estimates of the ascent of excessive human water use. As the transformation of global farming into sustainable forms is unattainable without a revolution in agricultural water use, water saving and food production potentials are put into perspective with targets outlined by the Sustainable Development Goals (SDGs). The literature body and here-confirmed global estimates of untapped opportunities in farm water management indicate that these measures could sustainably intensify today's farming systems at scale. While rigorous implementation of sustainable water withdrawals (SDG 6.4) might impinge upon 5% of global food production, scaling-up water interventions in rainfed and irrigated systems could over-compensate such losses and further increase global production by 30% compared to the current situation (SDG 2.3). Without relying on future technological fixes, traditional on-farm water and soil management provides key strategies associated with important synergies that needs better integration into agro-ecological landscape approaches. Integrated strategies for sustainable intensification of agriculture within planetary boundaries are a potential way to attain several SDGs, but they are not yet receiving attention from high-level development policies. © Copyright © 2020 Jägermeyr.