Search Results

Now showing 1 - 2 of 2
  • Item
    Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming
    (San Diego, Calif. : Elsevier, 2020) Huber, Veronika; Krummenauer, Linda; Peña-Ortiz, Cristina; Lange, Stefan; Gasparrini, Antonio; Vicedo-Cabrera, Ana M.; Garcia-Herrera, Ricardo; Frieler, Katja
    Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993–2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82–7.19) and 0.81% (95%CI: 0.72–0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: −0.02–1.06) at 3 °C, 1.53% (95%CI: 0.96–2.06) at 4 °C, and 2.88% (95%CI: 1.60–4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. © 2020 The Authors
  • Item
    The Berlin principles on one health - Bridging global health and conservation
    (Amsterdam [u.a.] : Elsevier Science, 2020) Gruetzmacher, Kim; Karesh, William B.; Amuasi, John H.; Arshad, Adnan; Farlow, Andrew; Gabrysch, Sabine; Jetzkowitz, Jens; Lieberman, Susan; Palmer, Clare; Winkler, Andrea S.; Walzer, Chris
    For over 15-years, proponents of the One Health approach have worked to consistently interweave components that should never have been separated and now more than ever need to be re-connected: the health of humans, non-human animals, and ecosystems. We have failed to heed the warning signs. A One Health approach is paramount in directing our future health in this acutely and irrevocably changed world. COVID-19 has shown us the exorbitant cost of inaction. The time to act is now. © 2020