Search Results

Now showing 1 - 10 of 30
  • Item
    Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties
    (Washington, DC : ACS, 2021) Martín-García, Beatriz; Spirito, Davide; Biffi, Giulia; Artyukhin, Sergey; Francesco Bonaccorso, null; Krahne, Roman
    Halide double perovskites are an interesting alternative to Pb-containing counterparts as active materials in optoelectronic devices. Low-dimensional double perovskites are fabricated by introducing large organic cations, resulting in organic/inorganic architectures with one or more inorganic octahedra layers separated by organic cations. Here, we synthesized layered double perovskites based on 3D Cs2AgBiBr6, consisting of double (2L) or single (1L) inorganic octahedra layers, using ammonium cations of different sizes and chemical structures. Temperature-dependent Raman spectroscopy revealed phase transition signatures in both inorganic lattice and organic moieties by detecting variations in their vibrational modes. Changes in the conformational arrangement of the organic cations to an ordered state coincided with a phase transition in the 1L systems with the shortest ammonium moieties. Significant changes of photoluminescence intensity observed around the transition temperature suggest that optical properties may be affected by the octahedral tilts emerging at the phase transition.
  • Item
    Direct observation and simultaneous use of linear and quadratic electro-optical effects
    (Bristol : IOP Publ., 2020) Steglich, Patrick; Mai, Christian; Villringer, Claus; Mai, Andreas
    We report on the direct observation and simultaneous use of the linear and quadratic electro-optical effect and propose a method by which higher-order susceptibilities of electro-optical materials can be determined. The evaluation is based on the separation of the second- and third-order susceptibilities and the experimental technique uses a slot waveguide ring resonator fabricated in integrated photonic circuit technology, which is embedded by a guest-host polymer system consisting of the azobenzene dye Disperse Red 1 in a poly(methyl methacrylate) matrix as an active electro-optical material. The contribution of both effects on the electro-optical response under the influence of static and time-varying electrical fields is investigated. We show that the quadratic electro-optical effect has a significant influence on the overall electro-optical response even with acentric molecular orientated molecules. Our findings have important implications for developing electro-optical devices based on polymer-filled slot waveguides and give rise to advanced photonic circuits. © 2020 IOP Publishing Ltd.
  • Item
    Design and simulation of losses in Ge/SiGe terahertz quantum cascade laser waveguides
    (Washington, DC : Soc., 2020) Gallacher, K.; Ortolani, M.; Rew, K.; Ciano, C.; Baldassarre, L.; Virgilio, M.; Scalari, G.; Faist, J.; Gaspare, L.D.I.; Seta, M.D.E.; Capellini, G.; Grange, T.; Birner, S.; Paul, D.J.
    The waveguide losses from a range of surface plasmon and double metal waveguides for Ge/Si1-xGex THz quantum cascade laser gain media are investigated at 4.79 THz (62.6 µm wavelength). Double metal waveguides demonstrate lower losses than surface plasmonic guiding with minimum losses for a 10 µm thick active gain region with silver metal of 21 cm-1 at 300 K reducing to 14.5 cm-1 at 10 K. Losses for silicon foundry compatible metals including Al and Cu are also provided for comparison and to provide a guide for gain requirements to enable lasers to be fabricated in commercial silicon foundries. To allow these losses to be calculated for a range of designs, the complex refractive index of a range of nominally undoped Si1-xGex with x = 0.7, 0.8 and 0.9 and doped Ge heterolayers were extracted from Fourier transform infrared spectroscopy measurements between 0.1 and 10 THz and from 300 K down to 10 K. The results demonstrate losses comparable to similar designs of GaAs/AlGaAs quantum cascade laser plasmon waveguides indicating that a gain threshold of 15.1 cm-1 and 23.8 cm-1 are required to produce a 4.79 THz Ge/SiGe THz laser at 10 K and 300 K, respectively, for 2 mm long double metal waveguide quantum cascade lasers with facet coatings. © 2020 OSA - The Optical Society. All rights reserved.
  • Item
    From Lab-on-chip to Lab-in-App: Challenges towards silicon photonic biosensors product developments
    (Amsterdam : Elsevier, 2022) Mai, Andreas; Mai, Christian; Steglich, Patrick
    This work presents and evaluates different approaches of integrated optical sensors based on photonic integrated circuit (PIC) technologies for refractive index sensing. Bottlenecks in the fabrication flow towards an applicable system are discussed that hinder a cost-effective mass-production for disposable sensor chips. As sensor device, a waveguide coupled micro-ring based approach is chosen which is manufactured in an 8” wafer level process. We will show that the co-integration with a reproducible, scalable and low-cost microfluidic interface is the main challenge which needs to be overcome for future application of silicon technology based PIC sensor chips.
  • Item
    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts
    (Bristol : IOP Publishing, 2021) Steglich, Patrick; Mai, Christian; Villringer, Claus; Dietzel, Birgit; Bondarenko, Siegfried; Ksianzou, Viachaslau; Villasmunta, Francesco; Zesch, Christoph; Pulwer, Silvio; Burger, Martin; Bauer, Joachim; Heinrich, Friedhelm; Schrader, Sigurd; Vitale, Francesco; De Matteis, Fabio; Prosposito, Paolo; Casalboni, Mauro; Mai, Andreas
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given.
  • Item
    Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology
    (Bristol : IOP Publ., 2020) Georgieva, Galina; Voigt, Karsten; Mai, Christian; Seiler, Pascal M.; Petermann, Klaus; Zimmermann, Lars
    We investigate numerically and experimentally sheared 2D grating couplers in a photonic BiCMOS technology with a focus on their splitting behavior. Two realization forms of a waveguide-To-grating shear angle are considered. The cross-polarization used as a figure-of-merit is shown to be strongly dependent on the grating perturbation strength and is a crucial limitation not only for the grating splitting performance, but also for its coupling efficiency. © 2020 The Japan Society of Applied Physics.
  • Item
    A 112 Gb/s Radiation-Hardened Mid-Board Optical Transceiver in 130-nm SiGe BiCMOS for Intra-Satellite Links
    (Lausanne : Frontiers Media, 2021) Giannakopoulos, Stavros; Sourikopoulos, Ilias; Stampoulidis, Leontios; Ostrovskyy, Pylyp; Teply, Florian; Tittelbach-Helmrich, K.; Panic, Goran; Fischer, Gunter; Grabowski, Alexander; Zirath, Herbert; Ayzac, Philippe; Venet, Norbert; Maho, Anaëlle; Sotom, Michel; Jones, Shaun; Wood, Grahame; Oxtoby, Ian
    We report the design of a 112 Gb/s radiation-hardened (RH) optical transceiver applicable to intra-satellite optical interconnects. The transceiver chipset comprises a vertical-cavity surface-emitting laser (VCSEL) driver and transimpedance amplifier (TIA) integrated circuits (ICs) with four channels per die, which are adapted for a flip-chip assembly into a mid-board optics (MBO) optical transceiver module. The ICs are designed in the IHP 130 nm SiGe BiCMOS process (SG13RH) leveraging proven robustness in radiation environments and high-speed performance featuring bipolar transistors (HBTs) with fT/fMAX values of up to 250/340 GHz. Besides hardening by technology, radiation-hardened-by-design (RHBD) components are used, including enclosed layout transistors (ELTs) and digital logic cells. We report design features of the ICs and the module, and provide performance data from post-layout simulations. We present radiation evaluation data on analog devices and digital cells, which indicate that the transceiver ICs will reliably operate at typical total ionizing dose (TID) levels and single event latch-up thresholds found in geostationary satellites.
  • Item
    Design and performance analysis of integrated focusing grating couplers for the transverse-magnetic TM00 mode in a photonic BiCMOS technology
    (London : Biomed Central, 2020) Georgieva, Galina; Voigt, Karsten; Peczek, Anna; Mai, Christian; Zimmermann, Lars
    Focusing grating couplers for the excitation of the fundamental transverse-magnetic (TM) mode in integrated silicon photonic waveguides are designed and characterized under the boundary conditions of a photonic BiCMOS foundry. Two types of waveguide geometries are considered – a nanowire and a rib waveguide. Wafer-scale experimental results for nanowire TM grating couplers are in excellent agreement with numerical investigations and demonstrate a robust behavior on the wafer. The mean coupling loss and the 3s interval are -3.9 ± 0.3 dB. The on wafer variation is three times lower than for the fundamental transverse-electric (TE) polarization. Similarly, the coupling in rib waveguides is examined as well. The results indicate that the rib waveguides require a modified geometry when designed for TM. In general, the nanowire waveguide type is more suitable for TM coupling, showing a stable and repeatable performance. © 2020, The Author(s).
  • Item
    A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations
    (Bristol : IOP Publishing, 2021) Georgieva, Galina; Voigt, Karsten; Seiler, Pascal M.; Mai, Christian; Petermann, Klaus; Zimmermann, Lars
    We explore scattering effects as the physical origin of cross-polarization and higher-order modes in silicon photonic 2D grating couplers (GCs). A simplified analytical model is used to illustrate that in-plane scattering always takes place, independent of grating geometry and design coupling angle. Experimental investigations show furthermore that grating design parameters are especially related to the modal composition of both the target- and the cross-polarization. Scattering effects and the associated cross-polarization and higher-order modes are indicated as the main reason for the higher 2D GC insertion loss compared to standard 1D GCs. In addition, they can be responsible for a variable 2D GC spectrum shape, bandwidth and polarization dependent loss.
  • Item
    JICG CMOS transistors for reduction of total ionizing dose and single event effects in a 130 nm bulk SiGe BiCMOS technology
    (Amsterdam : North-Holland Publ. Co., 2020) Sorge, R.; Schmidt, J.; Wipf, Ch.; Reimer, F.; Teply, F.; Korndörfer, F.
    We report on a novel radiation hardening by design (RHBD) approach for mitigation of total ionization dose (TID) induced drain leakage currents and single event transient (SET) in digital circuits fabricated in a 130 nm bulk SiGe BiCMOS technology. In order to avoid significant TID induced increase of drain leakage currents for NMOS transistors and channel pinch-off for PMOS transistors due to positive charges trapped at the lateral shallow trench insulator silicon interface we introduced junction isolation (JI) for the lateral MOS channel regions. The device construction measures applied also support to suppress the generation SETs. The tolerance of JI MOS transistors against TID induced drain leakage currents was verified up to a TID > 1.3 Mrad(Si). SET tests performed at four different inverter types varying in the arrangement the deep well in the layout. For CMOS inverters with isolated NMOS transistors a LET threshold > 130 MeV cm2 mg−1 was obtained.