Search Results

Now showing 1 - 10 of 11
  • Item
    Erratum: Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging (Nanoscale (2021) DOI: 10.1039/D1NR01806J)
    (Cambridge : RSC Publ., 2021) Carnis, Jerome; Kirner, Felizitas; Lapkin, Dmitry; Sturm, Sebastian; Kim, Young Yong; Baburin, Igor A.; Khubbutdinov, Ruslan; Ignatenko, Alexandr; Iashina, Ekaterina; Mistonov, Alexander; Steegemans, Tristan; Wieck, Thomas; Gemming, Thomas; Lubk, Axel; Lazarev, Sergey; Sprung, Michael; Vartanyants, Ivan A.; Sturm, Elena V.
    Correction for ‘Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging’ by Jerome Carnis et al., Nanoscale, 2021, DOI: 10.1039/D1NR01806J.
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Electronic Doping and Enhancement of n‐Channel Polycrystalline OFET Performance through Gate Oxide Modifications with Aminosilanes
    (Weinheim : Wiley-VCH, 2021) Shin, Nara; Schellhammer, Karl Sebastian; Lee, Min Ho; Zessin, Jakob; Hambsch, Mike; Salleo, Alberto; Ortmann, Frank; Mannsfeld, Stefan C.B.
    Self-assembled monolayers (SAMs) are widely employed in organic field-effect transistors to modify the surface energy, surface roughness, film growth kinetics, and electrical surface potential of the gate oxide to control the device's operating voltage. In this study, amino-functionalized SAM molecules are compared to pure alkylsilane SAMS in terms of their impact on the electrical properties of organic field-effect transistors, using the n-type polycrystalline small molecule semiconductor material N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8). In order to understand the electronic impact of the amino groups, the effect of both the number of amino-containing functional groups and the SAM molecular length are systematically studied. Though amino-functionalized SAM materials have been studied previously, this study is, for the first time, able to shed light on the nature of the doping effect that occurs when the gate oxide is treated with polar aminosilane materials. By a comprehensive theoretical study of the interface on the molecular level, it is shown that the observed shift in the threshold voltage is caused by free charges, which are attracted to the PTCDI-C8 and are stabilized there by protonated aminosilanes. This attraction and the voltage shift can be systematically tuned by varying the length of the neutral terminal chain of the aminosilane. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH
  • Item
    The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Soltani, Niloofar; Abbas, Syed Muhammad; Hantusch, Martin; Lehmann, Sebastian; Nielsch, Kornelius; Bahrami, Amin; Mikhailova, Daria
    The electrochemical performances of CoSn2 and Ni3Sn4 as potential anode materials in lithium-ion batteries (LIBs) are investigated using varying thicknesses of an alumina layer deposited by the atomic layer deposition (ALD) technique. Rate capability results showed that at high current densities, Al2O3-coated CoSn2 and Ni3Sn4 electrodes after 10-ALD cycles outperformed uncoated materials. The charge capacities of coated CoSn2 and Ni3Sn4 electrodes are 571 and 134 mAh g−1, respectively, at a high current density of 5 A g−1, while the capacities of uncoated electrodes are 363 and 11 mAh g−1. When the current density is reduced to 1 A g−1, however, the cycling performances of Al2O3-coated CoSn2 and Ni3Sn4 electrodes fade faster after almost 40 cycles than uncoated electrodes. The explanation is found in the composition of the solid-electrolyte interface (SEI), which strongly depends on the current rate. Thus, X-ray photoelectron spectroscopy analysis of SEI layers on coated samples cycles at a low current density of 0.1 Ag−1, revealed organic carbonates as major products, which probably have a low ionic conductivity. In contrast, the SEI of coated materials cycled at 5 Ag−1 consists mostly of mixed inorganic/organic fluorine-rich Al-F and C-F species facilitating a higher ionic transport, which improves electrochemical performance.
  • Item
    Self‐Patterning of Multifunctional Heusler Membranes by Dewetting
    (Weinheim : Wiley-VCH, 2021) Lünser, Klara; Diestel, Anett; Nielsch, Kornelius; Fähler, Sebastian
    Ni-Mn-based Heusler alloys are an emerging class of materials which enable actuation by (magnetic) shape memory effects, magnetocaloric cooling, and thermomagnetic energy harvesting. Multifunctional materials have a particular advantage for miniaturization since their functionality is already built within the material. However, often complex microtechnological processing is required to bring these materials into shape. Here, self-organized formation of single crystalline membranes having arrays of rectangular holes with high aspect ratio is demonstrated. Dewetting avoids the need for complicated processing and allows to prepare freestanding Ni–Mn–Ga–Co membranes. These membranes are martensitic and magnetic, and their functional properties are not disturbed by self-patterning. Feature sizes of these membranes can be tailored by film thickness and heat treatment, and the tendencies can be explained with dewetting. As an outlook, the advantages of these multifunctional membranes for magnetocaloric and thermomagnetic microsystems are sketched. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion
    (Weinheim : Wiley-VCH, 2021) Zhang, Qihao; Huang, Aibin; Ai, Xin; Liao, Jincheng; Song, Qingfeng; Reith, Heiko; Cao, Xun; Fang, Yueping; Schierning, Gabi; Nielsch, Kornelius; Bai, Shengqiang; Chen, Lidong
    Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.
  • Item
    Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2021) He, Shiyang; Lehmann, Sebastian; Bahrami, Amin; Nielsch, Kornelius
    Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the core–shell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials.
  • Item
    In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
    (Weinheim : Wiley-VCH, 2020) Zhao, Liang; Ta, Huy Q.; Mendes, Rafael G.; Bachmatiuk, Alicja; Rummeli, Mark H.
    Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single-atom-thick two-dimensional (2D) metals exist. This work shows single-atom-thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single-atom-thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Correlation of Work Function and Conformation of C80 Endofullerenes on h-BN/Ni(111)
    (Weinheim : Wiley-VCH, 2024) Stania, Roland; Seitsonen, Ari Paavo; Jung, Hyunjin; Kunhardt, David; Popov, Alexey A.; Muntwiler, Matthias; Greber, Thomas
    Change of conformation or polarization of molecules is an expression of their functionality. If the two correlate, electric fields can change the conformation. In the case of endofullerene single-molecule magnets the conformation is linked to an electric and a magnetic dipole moment, and therefore magnetoelectric effects are envisoned. The interface system of one monolayer Sc2TbN@C80 on hexagonal boron nitride (h-BN) on Ni(111) has been studied. The molecular layer is hexagonally close packedbut incommensurate. With photoemission the polarization and the conformation of the molecules are addressed by the work function and angular intensity distributions. Valence band photoemission (ARPES) shows a temperature-induced energy shift of the C80 molecular orbitals that is parallel to a change in work function of 0.25 eV without charging the molecules. ARPES indicates a modification in molecular conformations between 30 and 300 K. This order–disorder transition involves a polarization change in the interface and is centered at 125 K as observed with high-resolution X-ray photoelectron spectroscopy (XPS). The temperature dependence is described with a thermodynamic model that accounts for disordering with an excitation energy of 74 meV into a high entropy ensemble. All experimental results are supported by density functional theory (DFT).