Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Rhodium-catalyzed borylative carbon monoxide reduction to gem-diborylmethane

2021, Xua, Jian-Xing, Wu, Fu-Peng, Wu, Xiao-Feng

Herein, we developed a rhodium-catalyzed reduction of CO with bis(pinacolato)diboron (B2pin2) under atmospheric pressure of CO with silane as the hydride source, gem-diborylmethane [H2C(Bpin)2] as a versatile and fundamental C1 compound can be formed. Notably, this is the first example on transition metal-catalyzed borylation of CO. © 2020 The Author(s)

Loading...
Thumbnail Image
Item

Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis

2021, Koch, M., Apushkinskaya, N., Zolotukhina, E.V., Silina, Y.E.

Here, fundamental aspects affecting template-assisted engineering of oxidase-associated peroxide oxidation co-catalysis of the modeled microanalytical system based on the hybrid palladium nanoparticles (Pd-NPs) with tailored functional properties were studied. By an accurate tuning and validation of the experimental setup, a modular Pd-NPs-doped one-pot/one-electrode amperometric nanobiosensor for advanced multiplex analyte detection was constructed. The specific operational conditions (electrochemical read-out mode, pH, regeneration procedure) of the modular one-pot/one-electrode nanobiosensor allowed a reliable sensing of L-lactate (with linear dynamic range, LDR = 500 µM – 2 mM, R2 = 0.977), D-glucose (with LDR = 200 µM – 50 mM, R2 = 0.987), hydrogen peroxide (with LDR = 20 µM – 100 mM, R2 = 0.998) and glutaraldehyde (with LDR = 1 – 100 mM, R2 = 0.971). In addition, mechanistic aspects influencing the performance of Pd-NPs-doped one-pot/one-electrode for multiplex analyte sensing were studied in detail. The designed one-pot/one-electrode amperometric nanobiosensor showed a thin layer electrochemical behavior that greatly enhanced electron transfer between the functional hybrid layer and the electrode. Finally, a specific regeneration procedure of the hybrid one-pot/one-electrode and algorithm towards its usage for modular biocatalysis were developed. The reported strategy can readily be considered as a guideline towards the fabrication of commercialized nanobiosensors with tailored properties for advanced modular biocatalysis.