Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

On the Promotion of Catalytic Reactions by Surface Acoustic Waves

2020, von Boehn, Bernhard, Foerster, Michael, von Boehn, Moritz, Prat, Jordi, Macià, Ferran, Casals, Blai, Khaliq, Muhammad Waqas, Hernández-Mínguez, Alberto, Aballe, Lucia, Imbihl, Ronald

Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified. Using stroboscopic X-ray photoelectron spectro-microscopy, we were able to evidence a sub-nanosecond work function change during propagation of 500 MHz SAWs on a 9 nm thick platinum film. We quantify the work function change to 455 μeV. Such a small variation rules out that electronic effects due to elastic deformation (strain) play a major role in the SAW-induced promotion of catalysis. In a second set of experiments, SAW-induced intermixing of a five monolayers thick Rh film on top of polycrystalline platinum was demonstrated to be due to enhanced thermal diffusion caused by an increase of the surface temperature by about 75 K when SAWs were excited. Reversible surface structural changes are suggested to be a major cause for catalytic promotion. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Beam damage of single semiconductor nanowires during X-ray nanobeam diffraction experiments

2020, Al Hassan, Ali, Lähnemann, Jonas, Davtyan, Arman, Al-Humaidi, Mahmoud, Herranz, Jesús, Bahrami, Danial, Anjum, Taseer, Bertram, Florian, Dey, Arka Bikash, Geelhaar, Lutz, Pietsch, Ullrich

Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.

Loading...
Thumbnail Image
Item

Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves

2022, Zanotto, Simone, Biasiol, Giorgio, Santos, Paulo V., Pitanti, Alessandro

Wave refraction at an interface between different materials is a basic yet fundamental phenomenon, transversal to several scientific realms – electromagnetism, gas and fluid acoustics, solid mechanics, and possibly also matter waves. Under specific circumstances, mostly enabled by structuration below the wavelength scale, i.e., through the metamaterial approach, waves undergo negative refraction, eventually enabling superlensing and transformation optics. However, presently known negative refraction systems are symmetric, in that they cannot distinguish between positive and negative angles of incidence. Exploiting a metamaterial with an asymmetric unit cell, we demonstrate that the aforementioned symmetry can be broken, ultimately relying on the specific shape of the Bloch mode isofrequency curves. Our study specialized upon a mechanical metamaterial operating at GHz frequency, which is by itself a building block for advanced technologies such as chip-scale hybrid optomechanical and electromechanical devices. However, the phenomenon is based on general wave theory concepts, and it applies to any frequency and time scale for any kind of linear waves, provided that a suitable shaping of the isofrequency contours is implemented.

Loading...
Thumbnail Image
Item

In Situ Transmission Electron Microscopy of Disorder–Order Transition in Epitaxially Stabilized FeGe2

2021, Terker, Markus, Nicolai, Lars, Gaucher, Samuel, Herfort, Jens, Trampert, Achim

Isothermal crystallization of amorphous Ge deposited on a cubic Fe3Si/GaAs(001) substrate is performed by in situ annealing within a transmission electron microscope. It was found that the formation of epitaxially aligned tetragonal FeGe2 is associated with a disorder–order phase transition mainly consisting of a rearrangement of the Fe/vacancy sublattice from a random distribution to alternating filled and empty layers. Additionally, atomically resolved high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy demonstrated that the vertical lattice spacing of the Ge sublattice reduces across vacancy layers, indicating that strain minimization plays a role in the phase transition process. Crystallization and ordering are both found to proceed layer-by-layer and with square-root-shaped kinetics with a smaller transition rate for the latter.

Loading...
Thumbnail Image
Item

Silane-Mediated Expansion of Domains in Si-Doped κ-Ga2O3 Epitaxy and its Impact on the In-Plane Electronic Conduction

2022, Mazzolini, Piero, Fogarassy, Zsolt, Parisini, Antonella, Mezzadri, Francesco, Diercks, David, Bosi, Matteo, Seravalli, Luca, Sacchi, Anna, Spaggiari, Giulia, Bersani, Danilo, Bierwagen, Oliver, Janzen, Benjamin Moritz, Marggraf, Marcella Naomi, Wagner, Markus R., Cora, Ildiko, Pécz, Béla, Tahraoui, Abbes, Bosio, Alessio, Borelli, Carmine, Leone, Stefano, Fornari, Roberto

Unintentionally doped (001)-oriented orthorhombic κ-Ga2O3 epitaxial films on c-plane sapphire substrates are characterized by the presence of ≈ 10 nm wide columnar rotational domains that can severely inhibit in-plane electronic conduction. Comparing the in- and out-of-plane resistance on well-defined sample geometries, it is experimentally proved that the in-plane resistivity is at least ten times higher than the out-of-plane one. The introduction of silane during metal-organic vapor phase epitaxial growth not only allows for n-type Si extrinsic doping, but also results in the increase of more than one order of magnitude in the domain size (up to ≈ 300 nm) and mobility (highest µ ≈ 10 cm2V−1s−1, with corresponding lowest ρ ≈ 0.2 Ωcm). To qualitatively compare the mean domain dimension in κ-Ga2O3 epitaxial films, non-destructive experimental procedures are provided based on X-ray diffraction and Raman spectroscopy. The results of this study pave the way to significantly improved in-plane conduction in κ-Ga2O3 and its possible breakthrough in new generation electronics. The set of cross-linked experimental techniques and corresponding interpretation here proposed can apply to a wide range of material systems that suffer/benefit from domain-related functional properties.

Loading...
Thumbnail Image
Item

The impact of ultraviolet laser excitation during Raman spectroscopy of hexagonal boron nitride thin films

2020, Karim, Marwa, Lopes, Joao Marcelo J., Ramsteiner, Manfred

We utilized excitation in the ultraviolet (UV) spectral range for the study of hexagonal boron nitride (h-BN) thin films on different substrates by Raman spectroscopy. Whereas UV excitation offers fundamental advantages for the investigation of h-BN and heterostructures with graphene, the actual Raman spectra recorded under ambient conditions reveal a temporal decay of the signal intensity. The disappearance of the Raman signal is found to be induced by thermally activated chemical reactions with ambient molecules at the h-BN surface. The chemical reactions could be strongly suppressed under vacuum conditions which, however, favor the formation of a carbonaceous surface contamination layer. For the improvement of the signal-to-noise ratio under ambient conditions, we propose a line-scan method for the acquisition of UV Raman spectra in atomically thin h-BN, a material which is expected to play a key role in future technologies based on 2D van der Waals heterostructures. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd

Loading...
Thumbnail Image
Item

Optoelectronic properties and ultrafast carrier dynamics of copper iodide thin films

2022, Li, Zhan Hua, He, Jia Xing, Lv, Xiao Hu, Chi, Ling Fei, Egbo, Kingsley O., Li, Ming-De, Tanaka, Tooru, Guo, Qi Xin, Yu, Kin Man, Liu, Chao Ping

As a promising high mobility p-type wide bandgap semiconductor, copper iodide has received increasing attention in recent years. However, the defect physics/evolution are still controversial, and particularly the ultrafast carrier and exciton dynamics in copper iodide has rarely been investigated. Here, we study these fundamental properties for copper iodide thin films by a synergistic approach employing a combination of analytical techniques. Steady-state photoluminescence spectra reveal that the emission at ~420 nm arises from the recombination of electrons with neutral copper vacancies. The photogenerated carrier density dependent ultrafast physical processes are elucidated with using the femtosecond transient absorption spectroscopy. Both the effects of hot-phonon bottleneck and the Auger heating significantly slow down the cooling rate of hot-carriers in the case of high excitation density. The effect of defects on the carrier recombination and the two-photon induced ultrafast carrier dynamics are also investigated. These findings are crucial to the optoelectronic applications of copper iodide.

Loading...
Thumbnail Image
Item

Acoustically Driven Stark Effect in Transition Metal Dichalcogenide Monolayers

2021, Scolfaro, Diego, Finamor, Matheus, Trinchão, Luca O., Rosa, Bárbara L.T., Chaves, Andrey, Santos, Paulo V., Iikawa, Fernando, Couto Jr., Odilon D.D.

The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications. © 2021 The Authors. Published by American Chemical Society.

Loading...
Thumbnail Image
Item

X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires

2020, Davtyan, Arman, Kriegner, Dominik, Holý, Václav, AlHassan, Ali, Lewis, Ryan B., McDermott, Spencer, Geelhaar, Lutz, Bahrami, Danial, Anjum, Taseer, Ren, Zhe, Richter, Carsten, Novikov, Dmitri, Müller, Julian, Butz, Benjamin, Pietsch, Ullrich

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 μm resulting in strain variation of ∼2.5% in the NW core are found. © 2020.

Loading...
Thumbnail Image
Item

On-chip generation and dynamic piezo-optomechanical rotation of single photons

2022, Bühler, Dominik D., Weiß, Matthias, Crespo-Poveda, Antonio, Nysten, Emeline D. S., Finley, Jonathan J., Müller, Kai, Santos, Paulo V., de Lima Jr., Mauricio M., Krenner, Hubert J.

Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.