Search Results

Now showing 1 - 4 of 4
  • Item
    Preventing airborne transmission of SARS-CoV-2 in hospitals and nursing homes
    (Basel : MDPI AG, 2020) Ahlawat, Ajit; Mishra, Sumit Kumar; Birks, John W.; Costabile, Francesca; Wiedensohler, Alfred
    [No abstract available]
  • Item
    Physico-Chemical Properties and Deposition Potential of PM2.5 during Severe Smog Event in Delhi, India
    (Basel : MDPI AG, 2022) Fatima, Sadaf; Mishra, Sumit Kumar; Ahlawat, Ajit; Dimri, Ashok Priyadarshan
    The present work studies a severe smog event that occurred in Delhi (India) in 2017, targeting the characterization of PM2.5 and its deposition potential in human respiratory tract of different population groups in which the PM2.5 levels raised from 124.0 µg/m3 (pre-smog period) to 717.2 µg/m3 (during smog period). Higher concentration of elements such as C, N, O, Na, Mg, Al, Si, S, Fe, Cl, Ca, Ti, Cr, Pb, Fe, K, Cu, Cl, P, and F were observed during the smog along with dominant organic functional groups (aldehyde, ketones, alkyl halides (R-F; R-Br; R-Cl), ether, etc.), which supported potential contribution from transboundary biomass-burning activities along with local pollution sources and favorable meteorological conditions. The morphology of individual particles were found mostly as non-spherical, including carbon fractals, aggregates, sharp-edged, rod-shaped, and flaky structures. A multiple path particle dosimetry (MPPD) model showed significant deposition potential of PM2.5 in terms of deposition fraction, mass rate, and mass flux during smog conditions in all age groups. The highest PM2.5 deposition fraction and mass rate were found for the head region followed by the alveolar region of the human respiratory tract. The highest mass flux was reported for 21-month-old (4.7 × 102 µg/min/m2), followed by 3-month-old (49.2 µg/min/m2) children, whereas it was lowest for 21-year-old adults (6.8 µg/min/m2), indicating babies and children were more vulnerable to PM2.5 pollution than adults during smog. Deposition doses of toxic elements such as Cr, Fe, Zn, Pb, Cu, Mn, and Ni were also found to be higher (up to 1 × 10−7 µg/kg/day) for children than adults.
  • Item
    Pedestrian exposure to black carbon and PM2.5 emissions in urban hot spots: new findings using mobile measurement techniques and flexible Bayesian regression models
    (Basingstoke : Nature Publ. Group, 2021) Alas, Honey Dawn; Stöcker, Almond; Umlauf, Nikolaus; Senaweera, Oshada; Pfeifer, Sascha; Greven, Sonja; Wiedensohler, Alfred
    Background Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians’ exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations). Objective We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure. Methods We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error. Results The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM2.5. Significance Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.
  • Item
    Airborne bacterial emission fluxes from manure-fertilized agricultural soil
    (Oxford : Wiley-Blackwell, 2020) Thiel, Nadine; Münch, Steffen; Behrens, Wiebke; Junker, Vera; Faust, Matthias; Biniasch, Oliver; Kabelitz, Tina; Siller, Paul; Boedeker, Christian; Schumann, Peter; Roesler, Uwe; Amon, Thomas; Schepanski, Kerstin; Funk, Roger; Nübel, Ulrich
    This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.