Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Breast Cancer Stem Cell–Derived Tumors Escape from γδ T-cell Immunosurveillance In Vivo by Modulating γδ T-cell Ligands

2023, Raute, Katrin, Strietz, Juliane, Parigiani, Maria Alejandra, Andrieux, Geoffroy, Thomas, Oliver S., Kistner, Klaus M., Zintchenko, Marina, Aichele, Peter, Hofmann, Maike, Zhou, Houjiang, Weber, Wilfried, Boerries, Melanie, Swamy, Mahima, Maurer, Jochen, Minguet, Susana

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γ δ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γ δ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γ δ T cells. Indeed, neither promigratory engineered γ δ T cells, nor anti–PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γ δ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.

Loading...
Thumbnail Image
Item

simpleISM—A straight forward guide to upgrade from confocal to ISM

2022, Goswami, Monalisa, Lachmann, René, Kretschmer, Robert, Heintzmann, Rainer

Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations.