Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Quantitative Heat-Kernel Estimates for Diffusions with Distributional Drift

2022, Perkowski, Nicolas, van Zuijlen, Willem

[For Abstract, see PDF]

Loading...
Thumbnail Image
Item

Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes

2020, Maltsi, Anieza, Niermann, Tore, Streckenbach, Timo, Tabelow, Karsten, Koprucki, Thomas

We present a mathematical model and a tool chain for the numerical simulation of TEM images of semiconductor quantum dots (QDs). This includes elasticity theory to obtain the strain profile coupled with the Darwin–Howie–Whelan equations, describing the propagation of the electron wave through the sample. We perform a simulation study on indium gallium arsenide QDs with different shapes and compare the resulting TEM images to experimental ones. This tool chain can be applied to generate a database of simulated TEM images, which is a key element of a novel concept for model-based geometry reconstruction of semiconductor QDs, involving machine learning techniques.

Loading...
Thumbnail Image
Item

Detecting striations via the lateral photovoltage scanning method without screening effect

2021, Kayser, S., Farrell, P., Rotundo, N.

The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and SixGe1−x in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an open-source finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient. For higher injection conditions, we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution.

Loading...
Thumbnail Image
Item

Low-rank tensor reconstruction of concentrated densities with application to Bayesian inversion

2022, Eigel, Martin, Gruhlke, Robert, Marschall, Manuel

This paper presents a novel method for the accurate functional approximation of possibly highly concentrated probability densities. It is based on the combination of several modern techniques such as transport maps and low-rank approximations via a nonintrusive tensor train reconstruction. The central idea is to carry out computations for statistical quantities of interest such as moments based on a convenient representation of a reference density for which accurate numerical methods can be employed. Since the transport from target to reference can usually not be determined exactly, one has to cope with a perturbed reference density due to a numerically approximated transport map. By the introduction of a layered approximation and appropriate coordinate transformations, the problem is split into a set of independent approximations in seperately chosen orthonormal basis functions, combining the notions h- and p-refinement (i.e. “mesh size” and polynomial degree). An efficient low-rank representation of the perturbed reference density is achieved via the Variational Monte Carlo method. This nonintrusive regression technique reconstructs the map in the tensor train format. An a priori convergence analysis with respect to the error terms introduced by the different (deterministic and statistical) approximations in the Hellinger distance and the Kullback–Leibler divergence is derived. Important applications are presented and in particular the context of Bayesian inverse problems is illuminated which is a main motivation for the developed approach. Several numerical examples illustrate the efficacy with densities of different complexity and degrees of perturbation of the transport to the reference density. The (superior) convergence is demonstrated in comparison to Monte Carlo and Markov Chain Monte Carlo methods.

Loading...
Thumbnail Image
Item

Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy

2021, Hintermüller, Michael, Stengl, Steven-Marian, Surowiec, Thomas M.

The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.

Loading...
Thumbnail Image
Item

On the Stokes-Type Resolvent Problem Associated with Time-Periodic Flow Around a Rotating Obstacle

2022, Eiter, Thomas

Consider the resolvent problem associated with the linearized viscous flow around a rotating body. Within a setting of classical Sobolev spaces, this problem is not well posed on the whole imaginary axis. Therefore, a framework of homogeneous Sobolev spaces is introduced where existence of a unique solution can be guaranteed for every purely imaginary resolvent parameter. For this purpose, the problem is reduced to an auxiliary problem, which is studied by means of Fourier analytic tools in a group setting. In the end, uniform resolvent estimates can be derived, which lead to the existence of solutions to the associated time-periodic linear problem.

Loading...
Thumbnail Image
Item

Calculation of the steady states in dynamic semiconductor laser models

2022, Radziunas, Mindaugas

We discuss numerical challenges in calculating stable and unstable steady states of widely used dynamic semiconductor laser models. Knowledge of these states is valuable when analyzing laser dynamics and different properties of the lasing states. The example simulations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady state defining conditions are formulated as a system of nonlinear algebraic equations. The performed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial bias threshold relations in lasers with several electrical contacts, or predict and explain transient dynamics when simulating such lasers.

Loading...
Thumbnail Image
Item

Correction to: Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes

2021, Maltsi, Anieza, Niermann, Tore, Streckenbach, Timo, Tabelow, Karsten, Koprucki, Thomas

Correction to: Optical and Quantum Electronics (2020) 52:257 https://doi.org/10.1007/s11082-020-02356-y

Loading...
Thumbnail Image
Item

Inverse learning in Hilbert scales

2023, Rastogi, Abhishake, Mathé, Peter

We study linear ill-posed inverse problems with noisy data in the framework of statistical learning. The corresponding linear operator equation is assumed to fit a given Hilbert scale, generated by some unbounded self-adjoint operator. Approximate reconstructions from random noisy data are obtained with general regularization schemes in such a way that these belong to the domain of the generator. The analysis has thus to distinguish two cases, the regular one, when the true solution also belongs to the domain of the generator, and the ‘oversmoothing’ one, when this is not the case. Rates of convergence for the regularized solutions will be expressed in terms of certain distance functions. For solutions with smoothness given in terms of source conditions with respect to the scale generating operator, then the error bounds can then be made explicit in terms of the sample size.