Search Results

Now showing 1 - 10 of 19
  • Item
    Two-color two-dimensional terahertz spectroscopy: A new approach for exploring even-order nonlinearities in the nonperturbative regime
    (Melville, NY : American Institute of Physics, 2021) Woerner, Michael; Ghalgaoui, Ahmed; Reimann, Klaus; Elsaesser, Thomas
    Nonlinear two-dimensional terahertz (2D-THz) spectroscopy at frequencies of the emitted THz signal different from the driving frequencies allows for exploring the regime of (off-)resonant even-order nonlinearities in condensed matter. To demonstrate the potential of this method, we study two phenomena in the nonlinear THz response of bulk GaAs: (i) The nonlinear THz response to a pair of femtosecond near-infrared pulses unravels novel fourth- and sixth-order contributions involving interband shift currents, Raman-like excitations of transverse-optical phonon and intervalence-band coherences. (ii) Transient interband tunneling of electrons driven by ultrashort mid-infrared pulses can be effectively controlled by a low-frequency THz field with amplitudes below 50 kV/cm. The THz field controls the electron–hole separation modifying decoherence and the irreversibility of carrier generation.
  • Item
    Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates
    (Melville, NY : American Inst. of Physics, 2023) Knauer, A.; Kolbe, T.; Hagedorn, S.; Hoepfner, J.; Guttmann, M.; Cho, H.K.; Rass, J.; Ruschel, J.; Einfeldt, S.; Kneissl, M.; Weyers, M.
    High temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.
  • Item
    Transition to the quantum hall regime in InAs nanowire cross-junctions
    (Bristol : IOP Publ., 2019) Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Bologna, Nicolas; Rossell, Marta D.; Wirths, Stephan; Moselund, Kirsten; Nielsch, Kornelius; Riel, Heike
    We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Diffraction at GaAs/Fe3Si core/shell nanowires: The formation of nanofacets
    (Cambridge : arXiv, 2016) Jenichen, B.; Hanke, M.; Hilse, M.; Herfort, J.; Trampert, A.; Erwin, S.C.
    GaAs/Fe3Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30° compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1 1 ̄ 0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3Si shells and GaAs cores occurring at increased growth temperatures.
  • Item
    High-temperature annealing of AlN films grown on 4H-SiC
    (New York, NY : American Inst. of Physics, 2020) Brunner, F.; Cancellara, L.; Hagedorn, S.; Albrecht, M.; Weyers, M.
    The effect of high-temperature annealing (HTA) at 1700 °C on AlN films grown on 4H-SiC substrates by metalorganic vapor phase epitaxy has been studied. It is shown that the structural quality of the AlN layers improves significantly after HTA similar to what has been demonstrated for AlN grown on sapphire. Dislocation densities reduce by one order of magnitude resulting in 8 × 108 cm-2 for a-type and 1 × 108 cm-2 for c-type dislocations. The high-temperature treatment removes pits from the surface by dissolving nanotubes and dislocations in the material. XRD measurements prove that the residual strain in AlN/4H-SiC is further relaxed after annealing. AlN films grown at higher temperature resulting in a lower as-grown defect density show only a marginal reduction in dislocation density after annealing. Secondary ion mass spectrometry investigation of impurity concentrations reveals an increase of Si after HTA probably due to in-diffusion from the SiC substrate. However, C concentration reduces considerably with HTA that points to an efficient carbon removal process (i.e., CO formation). © 2020 Author(s).
  • Item
    Infrared emission bands and thermal effects for 440-nm-emitting GaN-based laser diodes
    (New York, NY : American Institute of Physics Inc., 2020) Mao F.; Hong J.; Wang H.; Chen Y.; Jing C.; Yang P.; Tomm J.W.; Chu J.; Yue F.
    Broad emission bands due to defects in (In,Ga,Al)N laser diodes operating at 440 nm are investigated using continuous-wave and pulsed currents. In addition to known yellow-green and short-wave infrared bands, defect emissions were observed even in the medium-wave infrared range. A separation from thermal radiation is possible. When using pulsed currents, a super-linearly increasing emission occurs at ∼1150 nm, which could be attributed to amplified spontaneous emission mainly due to the electroluminescence of deep defects in the optically active region. These results may be useful in interpreting the output power bottleneck of GaN-based lasers compared to mature GaAs-based lasers. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143802
  • Item
    Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers
    (New York, NY : American Inst. of Physics, 2022) Schrottke, L.; Lü, X.; Biermann, K.; Gellie, P.; Grahn, H.T.
    We have investigated high-performance GaAs/AlAs terahertz (THz) quantum-cascade lasers (QCLs) with respect to the long-term stability of their operating parameters. The output power of lasers that contain an additional, thick AlAs refractive-index contrast layer underneath the cascade structure decreases after three months by about 35%. The deterioration of these lasers is attributed to the oxidation processes in this contrast layer starting from the facets. However, GaAs/AlAs THz QCLs with an Al0.9Ga0.1As refractive-index contrast layer exhibit long-term stability of the operating parameters over many years even when they are exposed to atmospheric conditions. Therefore, these lasers are promising high-power radiation sources in the terahertz spectral region for commercial applications.
  • Item
    783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power
    (Washington, DC : The Optical Society, 2021) Sumpf, Bernd; Theurer, Lara Sophie; Maiwald, Martin; Müller, André; Maaßdorf, André; Fricke, Jörg; Ressel, Peter; Tränkle, Günther
    Wavelength stabilized distributed Bragg reflector (DBR) tapered diode lasers at 783 nm will be presented. The devices are based on GaAsP single quantum wells embedded in a large optical cavity leading to a vertical far field angle of about 29◦ (full width at half maximum). The 3-inch (7.62 cm) wafers are grown using metalorganic vapor phase epitaxy. In a full wafer process, 4 mm long DBR tapered lasers are manufactured. The devices consist of a 500 µm long 10th order surface DBR grating that acts as rear side mirror. After that, a 1 mm long ridge waveguide section is realized for lateral confinement, which is connected to a 2.5 mm long flared section having a full taper angle of 6◦. At an injection current of 8 A, a maximum output power of about 7 W is measured. At output powers up to 6 W, the measured emission width limited by the resolution of the spectrometer is smaller than 19 pm. Measured at 1/e2 level at this output power, the lateral beam waist width is 11.5 µm, the lateral far field angle 12.5◦, and the lateral beam parameter M2 2.5. The respective parameters measured using the second moments are 31 µm, 15.2◦, and 8.3. 70% of the emitted power is originated from the central lobe. © 2021 Optical Society of America
  • Item
    Selective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy
    (Melville, NY : American Inst. of Physics, 2018) Munshi, A. Mazid; Kim, Dong-Chul; Heimdal, Carl Philip; Heilmann, Martin; Christiansen, Silke H.; Vullum, Per Erik; van Helvoort, Antonius T. J.; Weman, Helge
    Wide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.